Exercise:
Integrate, $\int{{{\left(
\sin x+\cos x \right)}^{9}}\cos 2x}\,dx$
Solution: we
know that $\cos 2x={{\cos }^{2}}x-{{\sin }^{2}}x=\left( \cos x+\sin x
\right)\left( \cos x-\sin x \right)$
So $\int{{{\left(
\sin x+\cos x \right)}^{9}}\cos 2x}\,dx=\int{{{\left( \sin x+\cos x
\right)}^{9}}\left( \sin x+\cos x \right)\left( \cos x-\sin x \right)\,dx}$
$=\int{{{\left(
\sin x+\cos x \right)}^{10}}\left( \cos x-\sin x \right)dx}$
Take $u=\sin
x+\cos x\Leftrightarrow du=\left( \cos x-\sin x \right)dx$
So $\int{{{\left(
\sin x+\cos x \right)}^{10}}\left( \cos x-\sin x \right)dx}=\int{{{\left( \cos
x+\sin x \right)}^{10}}d\left( \cos x+\sin x \right)}$
$=\frac{1}{11}{{\left(
\cos x+\sin x \right)}^{11}}+c$
Exercise:
Integrate, $\int{\frac{\csc
x-\sec x}{1+\sec x\csc x}dx}$
Solution :
we have $\csc x-\sec x=\frac{1}{\sin x}-\frac{1}{\cos x}=\frac{\cos x-\sin
x}{\sin x\cos x}$
Also $1+\sec
x\csc x=1+\frac{1}{\cos x\sin x}=\frac{\cos x\sin x+1}{\cos x\sin x}$
So $\frac{\csc
x-\sec x}{1+\sec x\csc x}=\frac{\frac{\cos x-\sin x}{\sin x\cos x}}{\frac{\cos
x\sin x+1}{\cos x\sin x}}=\frac{\cos x-\sin x}{\cos x\sin x+1}\times
\frac{2}{2}=\frac{2\left( \cos x-\sin x \right)}{2\cos x\sin x+2}$
So $\int{\frac{\csc
x-\sec x}{1+\sec x\csc x}dx}=\int{\frac{\cos x-\sin x}{\cos x\sin
x+1}dx}=\int{\frac{2\left( \cos x-\sin x \right)}{2\cos x\sin x+1+1}dx}$
But ${{\cos
}^{2}}x+{{\sin }^{2}}x=1\Leftrightarrow 2\cos x\sin x+1=2\cos x\sin x+{{\cos
}^{2}}x+{{\sin }^{2}}x={{\left( \cos x+\sin x \right)}^{2}}$
So $\int{\frac{\csc
x-\sec x}{1+\sec x\csc x}dx}=2\int{\frac{\cos x-\sin x}{{{\left( \cos x+\sin x
\right)}^{2}}+1}dx}$
Take $u=\cos
x+\sin x\Leftrightarrow du=\left( \cos x-\sin x \right)dx$
So $\int{\frac{\csc x-\sec x}{1+\sec x\csc
x}dx}=2\int{\frac{du}{{{u}^{2}}+1}=2\arctan u+c=2\arctan \left( \cos x+\sin x
\right)+c}$
No comments:
Post a Comment