Exercise:
Integrate, $\int{\frac{{{\tan
}^{3}}x}{\sqrt{\sec x}}dx}$
Solution: we
have ${{\tan }^{3}}x={{\tan }^{2}}x\tan x=\left( {{\sec }^{2}}x-1 \right)\tan
x$
So $\int{\frac{{{\tan
}^{3}}x}{\sqrt{\sec x}}dx}=\int{\frac{\left( {{\sec }^{2}}x-1 \right)\tan
x}{\sqrt{\sec x}}dx}=\int{\left( {{\sec }^{2}}x-1 \right)\tan x{{\sec
}^{-1/2}}dx}$
$=\int{{{\sec
}^{3/2}}x\tan x\,dx\,\,-\int{\tan x{{\sec }^{-1/2}}}}x\,dx$
$=\int{{{\sec
}^{1/2}}x\sec x\tan x\,dx-\int{\tan x\sec x{{\sec }^{-3/2}}\,dx}}$
Let $u=\sec
x\Leftrightarrow du=\sec x\tan xdx$
$=\int{{{\sec
}^{1/2}}x\,d\left( \sec x \right)}-\int{{{\sec }^{-3/2}}x\,d\left( \sec x
\right)}$
$=\frac{2}{3}{{\sec
}^{3/2}}x+2{{\sec }^{-1/2}}x+c=\frac{2}{3}\sqrt{{{\sec
}^{3}}x}+\frac{2}{\sqrt{\sec x}}\,+c$
No comments:
Post a Comment