Exercise:
Compute , $\underset{x\to
0}{\mathop{\lim
}}\,\frac{1}{{{x}^{3}}}\int_{0}^{x}{\frac{{{t}^{2}}}{{{t}^{4}}+1}dt}$
Solution: as
$\frac{{{t}^{2}}}{{{t}^{4}}+1}$ is continuous at $0$ then $\underset{x\to
0}{\mathop{\lim }}\,\int_{0}^{x}{\frac{{{t}^{2}}}{{{t}^{4}}+1}dt}=0$
Hence $\underset{x\to
0}{\mathop{\lim
}}\,\frac{1}{{{x}^{3}}}\int_{0}^{x}{\frac{{{t}^{2}}}{{{t}^{4}}+1}dt}=\frac{0}{0}\,ind\,form$
Apply L’Hopital Rule we get
$\underset{x\to
0}{\mathop{\lim
}}\,\frac{1}{{{x}^{3}}}\int_{0}^{x}{\frac{{{t}^{2}}}{{{t}^{4}}+1}dt}=\underset{x\to
0}{\mathop{\lim }}\,\frac{1}{3{{x}^{2}}}\times \underset{x\to 0}{\mathop{\lim
}}\,\frac{d}{dx}\left( \int_{0}^{x}{\frac{{{t}^{2}}}{{{t}^{4}}+1}dt} \right)$ by
F.T.C
We get $\frac{d}{dx}\left(
\int_{0}^{x}{\frac{{{t}^{2}}}{{{t}^{4}}+1}dt}
\right)=\frac{{{x}^{2}}}{{{x}^{4}}+1}$
Hence $\underset{x\to
0}{\mathop{\lim
}}\,\frac{1}{{{x}^{3}}}\int_{0}^{x}{\frac{{{t}^{2}}}{{{t}^{4}}+1}dt}=\underset{x\to
0}{\mathop{\lim }}\,\frac{1}{3{{x}^{2}}}\times
\frac{{{x}^{2}}}{{{x}^{4}}+1}=\underset{x\to 0}{\mathop{\lim
}}\,\frac{1}{3}\times \frac{1}{{{x}^{4}}+1}=\frac{1}{3}$
No comments:
Post a Comment