Exercise:
Compute, $\int_{0}^{2}{\frac{\sqrt{x}}{\sqrt{x}+\sqrt{2-x}}dx}$
Solution:
Let $u=2-x\Rightarrow x=2-u\Leftrightarrow du=-dx$
So $I=\int_{0}^{2}{\frac{\sqrt{x}}{\sqrt{x}+\sqrt{2-x}}dx}=-\int_{u\left(
0 \right)}^{u\left( 2
\right)}{\frac{\sqrt{2-u}}{\sqrt{2-u}+\sqrt{u}}du=-\int_{2}^{0}{\frac{\sqrt{2-u}}{\sqrt{2-u}+\sqrt{u}}du}}$
$=\int_{0}^{2}{\frac{\sqrt{2-u}}{\sqrt{2-u}+\sqrt{u}}du}=\int_{0}^{2}{\frac{\sqrt{2-x}}{\sqrt{2-x}+\sqrt{x}}dx}$
Thus $2I=\int_{0}^{2}{dx}=2\Rightarrow I=1$
No comments:
Post a Comment