Exercise:
Solve in$\mathbb{R}$
, ${{16}^{x+{{y}^{2}}}}+{{16}^{y+{{x}^{2}}}}=1$
Solution:
Apply the AM-GM inequality $\frac{a+b}{2}\ge
\sqrt{ab}\Leftrightarrow a+b\ge 2\sqrt{ab}$
$\Rightarrow
{{\left( a+b \right)}^{2}}\ge 4ab$ So put $a={{16}^{x+{{y}^{2}}}}\,\,\And
\,\,\,b={{16}^{{{x}^{2}}+y}}$
$\Rightarrow
\left( {{16}^{x+{{y}^{2}}}}+{{16}^{{{x}^{2}}+y}} \right)\ge 4\left(
{{16}^{x+{{y}^{2}}+{{x}^{2}}+y}} \right)$
$\Rightarrow
1\ge 4\left( {{16}^{x+{{y}^{2}}+{{x}^{2}}+y}} \right)\Rightarrow 1\ge 4\left(
{{4}^{2x+2{{y}^{2}}+2{{x}^{2}}+2y}}
\right)={{4}^{2x+2{{y}^{2}}+2{{x}^{2}}+2y+1}}$
So ${{4}^{0}}\ge
{{4}^{2x+2{{y}^{2}}+2{{x}^{2}}+2y+1}}\Leftrightarrow
2x+2{{y}^{2}}+2{{x}^{2}}+2y+1\le 0$ Multiply by (2) to get
$\Rightarrow
4{{x}^{2}}+2{{y}^{2}}+4x+4y+2\le 0$ $\Rightarrow \left( {{\left( 2x
\right)}^{2}}+2\left( 1 \right)\left( 2x \right)+1 \right)+\left( {{\left( 2y
\right)}^{2}}+2\left( 1 \right)\left( 2y \right)+1 \right)\le 0$
$\Rightarrow
{{\left( 2x+1 \right)}^{2}}+{{\left( 2y+1 \right)}^{2}}\le 0$ so ${{\left( 2x+1
\right)}^{2}}+{{\left( 2y+1 \right)}^{2}}=0$ thus $x=-\frac{1}{2}\,or\,y=-\frac{1}{2}$
No comments:
Post a Comment