Exercise:
Let $z\in
\mathbb{C}$ such that $z= { i }^{ { i }^{ i^{.^{.^{.}}} } } $Find the value of ${{\left|
z \right|}^{2}}$
Solution: We
have $z= { i }^{ { i }^{ i^{.^{.^{.}}} } }$hence $z={{i}^{z}}={{\left( i \right)}^{z}}$
So $z={{e}^{\ln
\left( {{i}^{z}} \right)}}={{e}^{z\ln i}}$ but $\ln \left( i \right)=\ln
1+i\left( \frac{\pi }{2} \right)=i\left( \frac{\pi }{2} \right)$
Hence $z={{e}^{z\frac{\pi
}{2}i}}={{e}^{\frac{z\pi }{2}i}}\Rightarrow 1=\frac{{{e}^{\frac{z\pi
}{2}i}}}{z}\Rightarrow 1=\frac{1}{z{{e}^{\frac{-z\pi }{2}i}}}\Leftrightarrow
z{{e}^{\frac{-\pi }{2}zi}}=1$
Put $w=-\frac{\pi
}{2}zi\Leftrightarrow 2w=-\pi zi\Rightarrow z=-\frac{2w}{\pi i}$
Hence $z{{e}^{\frac{-\pi
}{2}zi}}=1\Leftrightarrow -\frac{2w}{\pi i}{{e}^{w}}=1\Leftrightarrow
-2w{{e}^{w}}=\pi i\Leftrightarrow w{{e}^{w}}=-\frac{\pi }{2}i$
So $W\left(
z \right){{e}^{W\left( z \right)}}=z$ where $z=-\frac{\pi }{2}i$ and $W$ is the
Lambert Function
Thus $w=W\left(
-\frac{\pi }{2}i \right)\Rightarrow z=-\frac{2w}{\pi i}=\frac{{{i}^{2}}2w}{\pi
i}=\frac{2wi}{\pi }=\frac{2i}{\pi }W\left( -\frac{\pi }{2}i
\right)=0.438283+0.360592i$
Therefore ${{\left|
z \right|}^{2}}={{\left( \sqrt{{{a}^{2}}+{{b}^{2}}}
\right)}^{2}}={{a}^{2}}+{{b}^{2}}={{\left( 0.438283 \right)}^{2}}+{{\left(
0.360592 \right)}^{2}}=0.3221188633963876$
Remark that
from lambert function that $ { z }^{ { z }^{ z^{.^{.^{.}}} } }=\frac{W\left( -\ln z
\right)}{-\ln z}$
So $ { i }^{ { i }^{ i^{.^{.^{.}}} } }=\frac{W\left(
-\ln i \right)}{-\ln i}=0.4382829367270321+0.3605924718713855i$
We can solve
this exercise also by using Elementary properties for complex numbers and some
of numerical analysis by supposing $z=a+ib\Rightarrow
z={{i}^{z}}={{i}^{a+ib}}$ but $i={{e}^{i\frac{\pi }{2}}}$
So $z={{\left(
{{e}^{i\frac{\pi }{2}}} \right)}^{a+ib}}={{e}^{i\frac{a\pi
}{2}}}{{e}^{\frac{-b\pi }{2}}}=r{{e}^{i\theta }}$ thus $r={{e}^{-\frac{b\pi
}{2}}}\,\,\And \,\,\theta =\frac{a\pi }{2}$ where $\theta =\arctan \left(
\frac{b}{a} \right)$
So ${{r}^{2}}={{e}^{-b\pi
}}\,\,\And \,\arctan \left( \frac{b}{a} \right)=\frac{a\pi }{2}\Leftrightarrow
\frac{b}{a}=\tan \left( \frac{a\pi }{2} \right)\Leftrightarrow b=a\tan
\frac{a\pi }{2}$
But ${{r}^{2}}={{a}^{2}}+{{b}^{2}}={{e}^{-b\pi
}}\Rightarrow {{a}^{2}}+{{a}^{2}}{{\tan }^{2}}\left( \frac{a\pi }{2}
\right)={{e}^{-a\tan \left( \frac{a\pi }{2} \right)\pi }}$
Now just
solving to find $a\,\And \,b$ using numerical method
No comments:
Post a Comment