Exercise:
Integrate, $\int{\frac{\cos
x}{\ln \left( \sin x \right)}dx}$
Solution:
Let $u=\sin x\Leftrightarrow du=\cos x\,dx\Leftrightarrow dx=\frac{du}{\cos x}$
So $\int{\frac{\cos
x}{\ln \left( \sin x \right)}dx}=\int{\frac{\cos x}{\ln u}\times \frac{du}{\cos
x}=\int{\frac{du}{\ln u}}}$
Now Take $w=\ln
u\Rightarrow {{e}^{w}}=u\Leftrightarrow {{e}^{w}}dw=du$
So $\int{\frac{du}{\ln
u}=\int{\frac{{{e}^{w}}}{w}dw}}$ it’s
clear that ${{e}^{w}}=1!+\frac{{{w}^{2}}}{2!}+\frac{{{w}^{3}}}{3!}+....=\sum\limits_{i=0}^{\infty
}{\frac{{{w}^{i}}}{i!}}$
Hence $\frac{{{e}^{w}}}{w}={{e}^{w}}{{w}^{-1}}={{w}^{-1}}\sum\limits_{i=0}^{\infty
}{\frac{{{w}^{i}}}{i!}=\sum\limits_{i=0}^{\infty
}{\frac{{{w}^{i-1}}}{i!}}}=\frac{1}{w}+\sum\limits_{i=1}^{\infty
}{\frac{{{w}^{i}}}{\left( i+1 \right)!}}$
Thus $\int{\frac{{{e}^{w}}}{w}dw}=\int{\sum\limits_{i=0}^{\infty
}{\frac{{{w}^{i-1}}}{i!}dw}}=\int{\frac{1}{w}dw+\int{\sum\limits_{i=1}^{\infty
}{\frac{{{w}^{i}}}{\left( i+1 \right)!}dw}}}$
$\Rightarrow
\int{\frac{{{e}^{w}}}{w}dw}=\ln \left| w \right|+\int{\sum\limits_{i=1}^{\infty
}{\frac{{{w}^{i}}}{\left( i+1 \right)!}dw}}$ in similar argument you will get the following
$\Rightarrow
\int{\frac{du}{\ln u}=\ln \left| \ln u \right|+\ln u+\sum\limits_{k=2}^{\infty
}{\frac{{{\left( \ln u \right)}^{k}}}{k.k!}+c}}=\ln \left| \ln \left( \sin x
\right) \right|+\ln \left( \sin x \right)+\sum\limits_{k=2}^{\infty }{\frac{{{\left(
\ln \sin x \right)}^{k}}}{k.k!}}+c$
Thus $\int{\frac{\cos
x}{\ln \sin x}dx=\ln \left| \ln \left( \sin x \right) \right|+\ln \left( \sin x
\right)+\sum\limits_{k=2}^{\infty }{\frac{{{\left( \ln \sin x
\right)}^{k}}}{k.k!}+c=\operatorname{li}\left( \sin x \right)+c}}$
No comments:
Post a Comment