ODE exercise using power series


Exercise:

Solve the following D.E $y''=y'$  (by Power Series )

Solution: we will solve this D.E using power series expansion as follows :

Let $y=\sum\limits_{i=0}^{\infty }{{{c}_{i}}{{x}^{i}}}$ then $y'=\sum\limits_{i=1}^{\infty }{i{{c}_{i}}{{x}^{i-1}}}\,\,\And \,\,y''=\sum\limits_{i=2}^{\infty }{i\left( i-1 \right){{c}_{i}}{{x}^{i-2}}}=\sum\limits_{i=0}^{\infty }{\left( i+2 \right)\left( i+1 \right){{c}_{i+2}}{{x}^{i}}}$

So $y''-y'=0\Rightarrow \sum\limits_{i=0}^{\infty }{\left( i+2 \right)\left( i+1 \right){{c}_{i+2}}{{x}^{i}}-\sum\limits_{i=1}^{\infty }{i\,{{c}_{i}}{{x}^{i-1}}}=0}$

Replace $i$ by $i+1$ for the second term

So $\sum\limits_{i=1}^{\infty }{i{{c}_{i}}{{x}^{i-1}}}=\sum\limits_{i=0}^{\infty }{\left( i+1 \right){{c}_{i+1}}{{x}^{i}}}$

Thus $y''-y'=0\Leftrightarrow \sum\limits_{i=0}^{\infty }{\left( i+2 \right)\left( i+1 \right){{c}_{i+2}}{{x}^{i}}-\sum\limits_{i=0}^{\infty }{\left( i+1 \right){{c}_{i+1}}{{x}^{i}}=0}}$

$\Rightarrow \sum\limits_{i=0}^{\infty }{\left[ \left( i+2 \right)\left( i+1 \right){{c}_{i+2}}-\left( i+1 \right){{c}_{i+1}} \right]{{x}^{i}}=0}$ $\Rightarrow {{c}_{i+2}}=\frac{1}{i+2}{{c}_{i+1}}$

For $i=0\Rightarrow {{c}_{2}}=\frac{1}{2}{{c}_{1}}$

For $i=1\Rightarrow {{c}_{3}}=\frac{1}{3}{{c}_{2}}$

For $i=2\Rightarrow {{c}_{4}}=\frac{1}{4}{{c}_{3}}$

So $y={{c}_{0}}+{{c}_{1}}x+{{c}_{2}}{{x}^{2}}+{{c}_{3}}{{x}^{3}}+{{c}_{4}}{{x}^{4}}+.....$

$y={{c}_{0}}+{{c}_{1}}x+\frac{1}{2}{{c}_{1}}{{x}^{2}}+\frac{1}{3}{{c}_{2}}{{x}^{3}}+\frac{1}{4}{{c}_{3}}{{x}^{4}}+....$

$y={{c}_{0}}+{{c}_{1}}x+\frac{1}{2}{{c}_{1}}{{x}^{2}}+\frac{1}{3}\times \frac{1}{2}{{c}_{1}}{{x}^{3}}+\frac{1}{4}\times \frac{1}{3}\times \frac{1}{2}{{c}_{1}}{{x}^{4}}+....$

Thus $y={{c}_{0}}+{{c}_{1}}\left( x+\frac{1}{2}{{x}^{2}}+\frac{1}{3}\times \frac{1}{2}{{x}^{3}}+\frac{1}{4}\times \frac{1}{3}\times \frac{1}{2}{{x}^{4}}+.... \right)={{c}_{0}}+{{c}_{1}}\left( \frac{x}{1!}+\frac{{{x}^{2}}}{2!}+\frac{{{x}^{3}}}{3!}+\frac{{{x}^{4}}}{4!}+..... \right)$


Therefore $y={{c}_{0}}+{{c}_{1}}{{e}^{x}}$ 

No comments:

Post a Comment