Exercise:
Solve the
following equation ${{\left( \frac{{{x}^{3}}+x}{3}
\right)}^{3}}+\frac{{{x}^{3}}+x}{3}=3x$
Solution: we
have ${{\left( \frac{{{x}^{3}}+x}{3} \right)}^{3}}=\frac{1}{27}{{\left(
{{x}^{3}}+x \right)}^{3}}=\frac{{{x}^{3}}{{\left( {{x}^{2}}+1
\right)}^{3}}}{27}={{\left( \frac{x}{3} \right)}^{3}}{{\left( {{x}^{2}}+1
\right)}^{3}}$
Also $\frac{{{x}^{3}}+x}{3}=\frac{x\left(
{{x}^{2}}+1 \right)}{3}=\left( \frac{x}{3} \right)\left( {{x}^{2}}+1 \right)$
So ${{\left(
\frac{{{x}^{3}}+x}{3} \right)}^{3}}+\frac{{{x}^{3}}+x}{3}=3x\Rightarrow
{{\left( \frac{x}{3} \right)}^{3}}{{\left( {{x}^{2}}+1 \right)}^{3}}+\left(
\frac{x}{3} \right)\left( {{x}^{2}}+1 \right)=3x$
$x\left(
\frac{{{x}^{2}}}{27}{{\left( {{x}^{2}}+1 \right)}^{3}}+\frac{1}{3}\left(
{{x}^{2}}+1 \right)-3 \right)=0$
$\Rightarrow
x=0\,\,or\frac{{{x}^{2}}}{27}{{\left( {{x}^{2}}+1
\right)}^{3}}+\frac{1}{3}\left( {{x}^{2}}+1 \right)-3=0$
Put $w=\frac{{{x}^{2}}+1}{3}\Rightarrow
3w-1={{x}^{2}}$
So $\left(
3w-1 \right){{w}^{3}}+w-3=0\Rightarrow 3{{w}^{4}}-{{w}^{3}}+w-3=0$
$\Rightarrow
3\left( {{w}^{4}}-1 \right)+w\left( 1-{{w}^{2}} \right)=0$
$\Rightarrow
3\left( {{w}^{2}}-1 \right)\left( {{w}^{2}}+1 \right)-w\left( {{w}^{2}}-1
\right)=0$
$\Rightarrow
\left( {{w}^{2}}-1 \right)\left( 3\left( {{w}^{2}}+1 \right)-w
\right)=0\Rightarrow {{w}^{2}}=1\,\,or\,\,3\left( {{w}^{2}}+1 \right)-w=0$
$\Rightarrow
w=\pm 1\,\,\,or\,\,3{{w}^{2}}+3-w=0$
If $w=1\Rightarrow
{{x}^{2}}=3-1=2\Leftrightarrow x=\pm \sqrt{2}$
If $w=-1\Rightarrow
{{x}^{2}}=-4\Leftrightarrow {{x}^{2}}=4{{i}^{2}}\Leftrightarrow x=\pm 2i$
Now Let’s
solve $3{{w}^{2}}+3-w=0$
$\Rightarrow
{{w}^{2}}-\frac{1}{3}w+1=0\Rightarrow
{{w}^{2}}-\frac{2}{2}\frac{1}{3}w+1=0\Rightarrow
{{w}^{2}}-2\frac{1}{6}w+\frac{1}{36}-\frac{1}{36}+1=0$
$\Rightarrow
{{\left( w-\frac{1}{6} \right)}^{2}}+\frac{35}{36}=0\Rightarrow {{\left(
w-\frac{1}{6} \right)}^{2}}=\frac{-35}{36}=\frac{35{{i}^{2}}}{36}$
$\Rightarrow
w-\frac{1}{6}=\pm i\frac{\sqrt{35}}{6}\Rightarrow w=\frac{1\pm i\sqrt{35}}{6}$
Now Back to ${{x}^{2}}=3w-1\Rightarrow
x=\pm \sqrt{3w-1}$
If $w=\frac{1+i\sqrt{35}}{6}\Rightarrow
x=\pm \sqrt{\frac{1+i\sqrt{35}}{2}-1}=\pm \sqrt{\frac{-1+i\sqrt{35}}{2}}$
If $w=\frac{1-i\sqrt{35}}{6}\Rightarrow
x=\pm \sqrt{\frac{1-i\sqrt{35}}{2}-1}=\pm \sqrt{\frac{-1-i\sqrt{35}}{2}}$
So the
Solutions are :
$x\in
\left\{
0,-\sqrt{2},\sqrt{2},-2i,2i,-\sqrt{\frac{-1+i\sqrt{35}}{2}},\sqrt{\frac{-1+i\sqrt{35}}{2}},-\sqrt{\frac{-1-i\sqrt{35}}{2}},\sqrt{\frac{-1+i\sqrt{35}}{2}}
\right\}$
So this
equation 3 real roots and 6 complex roots
No comments:
Post a Comment