Exercise:
Show that $\underset{n\to \infty }{\mathop{\lim }}\,{{\left(
\frac{n!}{{{n}^{n}}} \right)}^{1/n}}=\frac{1}{e}$
Solution: Let $y\left( n \right)={{\left(
\frac{n!}{{{n}^{n}}} \right)}^{1/n}}$ Take Logarithm both sides to get
$\ln y\left( n \right)=\frac{1}{n}\ln \left(
\frac{n!}{{{n}^{n}}} \right)\Rightarrow y\left( n \right)={{e}^{\frac{1}{n}\ln
\left( \frac{n!}{{{n}^{n}}} \right)}}={{e}^{f\left( n \right)}}$Where $f\left(
n \right)=\frac{1}{n}\ln \left( \frac{n!}{{{n}^{n}}} \right)$
But $\frac{n!}{{{n}^{n}}}=\frac{1\times 2\times .....\times
\left( n-1 \right)\times n}{n\times n\times ....\times n}$
So $\ln \left( \frac{n!}{{{n}^{n}}} \right)=\ln \left(
\frac{n\left( n-1 \right)\times .....\times 2\times 1}{n\times n\times
.....\times n} \right)=\ln \left( \frac{n}{n} \right)+\ln \left( \frac{n-1}{n}
\right)+....+\ln \left( \frac{2}{n} \right)+\ln \left( \frac{1}{n} \right)$
$\Rightarrow \ln \left( \frac{n!}{{{n}^{n}}}
\right)=\sum\limits_{i=1}^{n}{\ln \left( \frac{i}{n} \right)}$ thus $f\left( n \right)=\frac{1}{n}\ln \left(
\frac{n!}{{{n}^{n}}} \right)=\frac{1}{n}\sum\limits_{k=1}^{n}{\ln \left(
\frac{k}{n} \right)}$
But ${{x}_{k}}^{*}=\frac{k}{n}\,\,\And \,\,\Delta
{{x}_{k}}^{*}=\frac{1-0}{n}$
So $f\left( n \right)=\Delta
{{x}_{k}}^{*}\sum\limits_{k=1}^{n}{\ln {{x}_{k}}^{*}=\int_{0}^{1}{\ln
x\,dx}}=\left[ x\ln x-x \right]_{0}^{1}=\ln 1-1=-1$
Hence $\underset{n\to \infty }{\mathop{\lim }}\,y\left( n
\right)={{e}^{\underset{n\to \infty }{\mathop{\lim }}\,f\left( n
\right)}}={{e}^{-1}}=\frac{1}{e}$ (since
Exponential is continuous function)
No comments:
Post a Comment