Exercise:
Compute , $\int{\frac{\sin
x}{\cos x+\sin x}dx}$
Solution: we
have $\frac{\sin x}{\cos x+\sin x}=\frac{2}{2}\times \frac{\sin x}{\cos x+\sin
x}=\frac{1}{2}\times \frac{2\sin x}{\cos x+\sin x}$
$=\frac{1}{2}\times
\frac{\sin x+\cos x-\cos x+\sin x}{\cos x+\sin x}=\frac{1}{2}\left( 1+\frac{-\cos
x+\sin x}{\cos x+\sin x} \right)$
So $\int{\frac{\sin
x}{\cos x+\sin x}dx}=\frac{1}{2}\int{\frac{2\sin x}{\cos x+\sin
x}dx}=\frac{1}{2}\int{\left( 1+\frac{-\cos x+\sin x}{\cos x+\sin x} \right)dx}$
Take $u=\cos
x+\sin x\Leftrightarrow du=\left( \cos x-\sin x \right)dx$
So $\int{\frac{\sin
x}{\cos x+\sin x}dx}=\frac{1}{2}\int{dx}-\frac{1}{2}\int{\frac{\cos x-\sin
x}{\cos x+\sin x}dx}=\frac{1}{2}x-\frac{1}{2}\ln \left| \cos x+\sin x
\right|+c$
Exercise:
Compute, $\int{\frac{\cos
x}{\cos x+\sin x}dx}$
Solution: we
have $\frac{\cos x}{\cos x+\sin x}=\frac{1}{2}\times \frac{2\cos x}{\cos x+\sin
x}=\frac{1}{2}\times \frac{\cos x+\sin x-\sin x+\cos x}{\cos x+\sin x}$
$=\frac{1}{2}\left(
1+\frac{-\sin x+\cos x}{\cos x+\sin x} \right)=\frac{1}{2}\left( 1-\frac{\sin
x-\cos x}{\cos x+\sin x} \right)=\frac{1}{2}\left( 1+\frac{\cos x-\sin x}{\cos
x+\sin x} \right)$
So $\int{\frac{\sin
x}{\cos x+\sin x}dx}=\frac{1}{2}\int{\left( 1+\frac{\cos x-\sin x}{\cos x+\sin
x} \right)dx}=\frac{1}{2}x+\frac{1}{2}\int{\frac{d\left( \cos x+\sin x
\right)}{\cos x+\sin x}}$
$=\frac{1}{2}x+\frac{1}{2}\ln
\left| \cos x+\sin x \right|+c$
No comments:
Post a Comment