Exercise:
Integrate , $\int{x{{\sin
}^{-1}}x\,dx}$
Solution:
Let $u={{\sin }^{-1}}x\,\,\And \,\,dv=x\Leftrightarrow
du=\frac{1}{\sqrt{1-{{x}^{2}}}}dx\,\,\And \,\,v=\frac{1}{2}{{x}^{2}}$
So $\int{x{{\sin
}^{-1}}x\,dx}=\frac{1}{2}{{x}^{2}}\arcsin
x-\frac{1}{2}\int{\frac{{{x}^{2}}}{\sqrt{1-{{x}^{2}}}}dx}$
Let $x=\sin
\theta \Rightarrow dx=\cos \theta \,d\theta $
So $\int{\frac{{{x}^{2}}}{\sqrt{1-{{x}^{2}}}}dx}=\int{\frac{{{\sin
}^{2}}\theta \cos \theta d\theta }{\sqrt{1-{{\sin }^{2}}\theta
}}}=\int{\frac{{{\sin }^{2}}\theta \cos \theta }{\cos \theta }d\theta
=\int{{{\sin }^{2}}\theta d\theta }}$
But ${{\sin
}^{2}}\theta =\frac{1}{2}\left( 1-\cos 2\theta
\right)$
So $\int{{{\sin
}^{2}}\theta }d\theta =\frac{1}{2}\int{d\theta -\frac{1}{2}\int{\cos 2\theta
\,d\theta }=\frac{\theta }{2}-\frac{1}{4}\sin 2\theta +c}$
But $x=\sin
\theta \Leftrightarrow \theta =\arcsin x$ and $\sin 2\theta =2\sin \theta \cos
\theta =2x\cos \theta $
But $\cos
\theta =\sqrt{1-{{\sin }^{2}}\theta }=\sqrt{1-{{x}^{2}}}$
Thus $\int{\frac{{{x}^{2}}}{\sqrt{1-{{x}^{2}}}}dx}=\frac{1}{2}\arcsin
x+\frac{x}{2}\sqrt{1-{{x}^{2}}}+c$
Therefore, $\int{x{{\sin
}^{-1}}x\,dx}=\frac{1}{2}{{x}^{2}}\arcsin x-\frac{1}{4}\arcsin
x+\frac{x}{4}\sqrt{1-{{x}^{2}}}+c$
No comments:
Post a Comment