Exercise:
Let $f$ be a
function defined to be $f\left( x
\right)=\frac{1+\sqrt{\frac{1}{x}}}{\sqrt{1+\frac{1}{x}}}$
- Determine the range and the Domain of $f$
- Compute, $\int_{0}^{1}{f\left( x \right)dx}$
Solution:
(1)
we have $f\left( x
\right)=\frac{1+\sqrt{\frac{1}{x}}}{\sqrt{1+\frac{1}{x}}}$ is defined when $1+\frac{1}{x}>0$
So $1+\frac{1}{x}=\frac{x+1}{x}>0$
but $x\ne 0$ so $x>0\,\,or\,\,x<-1$
But $\sqrt{\frac{1}{x}}$
is defined when $x>0$ thus $dom\left( f \right)=\left\{ x\in
\mathbb{R}:x>0 \right\}$
Let $x={{\tan
}^{2}}\theta $ and we know that ${{\tan }^{2}}\theta >0$ and ${{\tan
}^{2}}\theta ={{\sec }^{2}}\theta -1>0$
Hence $f\left(
x \right)=f\left( {{\tan }^{2}}\theta
\right)=\frac{1+\sqrt{\frac{1}{{{\tan }^{2}}\theta
}}}{\sqrt{1+\frac{1}{{{\tan }^{2}}\theta }}}=\frac{1+\frac{1}{\tan \theta
}}{\frac{\sqrt{{{\tan }^{2}}\theta +1}}{\tan \theta }}=\frac{\tan \theta
+1}{\sec \theta }=\frac{\tan \theta }{\sec \theta }+\frac{1}{\sec \theta }$
$=\frac{\frac{\sin
\theta }{\cos \theta }}{\frac{1}{\cos \theta }}+\frac{1}{\frac{1}{\cos \theta
}}=\sin \theta +\cos \theta $ thus $f\left( {{\tan }^{2}}\theta \right)=\sin \theta +\cos \theta $
But $\sin
\theta +\cos \theta =\frac{\sqrt{2}}{\sqrt{2}}\sin \theta
+\frac{\sqrt{2}}{\sqrt{2}}\cos \theta =\sqrt{2}\left( \frac{1}{\sqrt{2}}\sin
\theta +\cos \theta \frac{1}{\sqrt{2}} \right)=\sqrt{2}\sin \left( \theta
+\frac{\pi }{4} \right)$
But $-1\le
\sin u\left( \theta \right)\le 1$ where $u\left(
\theta \right)=\theta +\frac{\pi }{4}$ $\Leftrightarrow
-\sqrt{2}\le \sqrt{2}\sin u\left( \theta
\right)\le \sqrt{2}$
Thus $-\sqrt{2}\le
f\left( {{\tan }^{2}}\theta \right)\le
\sqrt{2}$ but ${{\tan }^{2}}\theta >0\,\,\,\And \,\,{{\sec }^{2}}\theta
>1\Leftrightarrow 1\le f\left( x \right)\le \sqrt{2}$
Therefore $Range\left(
f \right)=\left\{ y\in \mathbb{R}:y\le \sqrt{2}\,\,\And \,y\ge 1 \right\}$
*The idea of solution in finding the range is Credit to فراس الناصري*
(2) $\int_{0}^{1}{f\left(
x \right)dx}=??$
We have $1+\sqrt{\frac{1}{x}}=\frac{\sqrt{x}+1}{\sqrt{x}}$
and $\sqrt{1+\frac{1}{x}}=\sqrt{\frac{x+1}{x}}=\frac{\sqrt{x+1}}{\sqrt{x}}$
So $\frac{1+\sqrt{\frac{1}{x}}}{\sqrt{1+\frac{1}{x}}}=\frac{\frac{\sqrt{x}+1}{\sqrt{x}}}{\frac{\sqrt{x+1}}{\sqrt{x}}}=\frac{\sqrt{x}+1}{\sqrt{x+1}}$
So $\int_{0}^{1}{f\left(
x
\right)dx}=\int_{0}^{1}{\frac{\sqrt{x}+1}{\sqrt{x+1}}dx}=\int_{0}^{1}{\frac{\sqrt{x}}{\sqrt{x+1}}dx}+\int_{0}^{1}{\frac{dx}{\sqrt{x+1}}}$
Let $u=x+1\Rightarrow
du=dx$ so \(\int_{0}^{1}{\frac{dx}{\sqrt{x+1}}=\int_{1}^{2}{\frac{du}{\sqrt{u}}=\left[
2\sqrt{u} \right]_{1}^{2}=2\sqrt{2}-2}}\)
We have $\frac{\sqrt{x}}{\sqrt{x+1}}=\frac{\sqrt{x}}{\sqrt{x\left(
1+\frac{1}{x}
\right)}}=\frac{\sqrt{x}}{\sqrt{x}\sqrt{1+\frac{1}{x}}}=\frac{1}{\sqrt{1+\frac{1}{x}}}$
So $\int_{0}^{1}{\frac{\sqrt{x}}{\sqrt{x+1}}dx}=\int_{0}^{1}{\frac{dx}{\sqrt{1+\frac{1}{x}}}}$
Let $u=\frac{1}{x}\Rightarrow
du=-\frac{1}{{{x}^{2}}}dx\Rightarrow -{{x}^{2}}du=dx$
So $\int{\frac{dx}{\sqrt{1+\frac{1}{x}}}=\int{\frac{-{{x}^{2}}du}{\sqrt{1+u}}}}=-\int{\frac{\frac{1}{{{u}^{2}}}}{\sqrt{1+u}}du}=-\int{\frac{du}{{{u}^{2}}\sqrt{1+u}}}$
Let $v=\sqrt{1+u}\Rightarrow
dv=\frac{1}{2\sqrt{1+u}}du\Rightarrow 2vdv=du$
So $-\int{\frac{du}{{{u}^{2}}\sqrt{1+u}}=-\int{\frac{2vdv}{{{\left(
{{v}^{2}}-1 \right)}^{2}}v}=-\int{\frac{2dv}{{{\left( {{v}^{2}}-1
\right)}^{2}}}}}}=-\int{\frac{2}{{{\left( v-1 \right)}^{2}}{{\left( v+1
\right)}^{2}}}dv}$
But $\frac{1}{{{\left(
v+1 \right)}^{2}}{{\left( v-1 \right)}^{2}}}=\frac{1}{4\left( v+1
\right)}+\frac{1}{4{{\left( v+1 \right)}^{2}}}-\frac{1}{4\left( v-1
\right)}+\frac{1}{4{{\left( v-1 \right)}^{2}}}$
So $-\int{\frac{2}{{{\left(
{{v}^{2}}-1 \right)}^{2}}}dv}=-\frac{2}{4}\ln \left| v+1
\right|-\frac{2}{4}\int{\frac{dv}{{{\left( v+1 \right)}^{2}}}+\frac{2}{4}\ln
\left| v-1 \right|-\frac{2}{4}\int{\frac{dv}{{{\left( v-1 \right)}^{2}}}}}$
\(=-\frac{1}{2}\ln
\left( v+1 \right)+\frac{1}{2\left( v+1 \right)}+\frac{1}{2}\ln \left( v-1
\right)+\frac{1}{2\left( v-1 \right)}+c\)
$=-\frac{1}{2}\ln
\left( \sqrt{1+\frac{1}{x}}+1 \right)+\frac{1}{2\left( \sqrt{1+\frac{1}{x}}+1
\right)}+\frac{1}{2}\ln \left( \sqrt{1+\frac{1}{x}}-1 \right)+\frac{1}{2\left(
\sqrt{1+\frac{1}{x}}-1 \right)}+c$
$\underset{x\to
{{1}^{-}}}{\mathop{\lim }}\,\left( -\frac{1}{2}\ln \left(
\sqrt{1+\frac{1}{x}}+1 \right)+\frac{1}{2}\ln \left( \sqrt{1+\frac{1}{x}}-1
\right) \right)=-\frac{1}{2}\ln \left( \sqrt{2}+1 \right)+\frac{1}{2}\ln \left(
\sqrt{2}-1 \right)$
But $\ln
\left( \sqrt{2}+1 \right)=\operatorname{arcsinh}\left( 1 \right)\,\And \,\ln
\left( \sqrt{2}-1 \right)=-\operatorname{arcsinh}\left( 1 \right)$
Thus $\underset{x\to
{{1}^{-}}}{\mathop{\lim }}\,\left( \frac{-1}{2}\ln \left(
\sqrt{1+\frac{1}{x}}+1 \right)+\frac{1}{2}\ln \left( \sqrt{1+\frac{1}{x}}-1
\right) \right)=-\frac{\operatorname{arcsinh}\left( 1 \right)}{2}-\frac{\operatorname{arcsinh}\left(
1 \right)}{2}=-\operatorname{arcsinh}\left( 1 \right)$
And $\underset{x\to
{{1}^{-}}}{\mathop{\lim }}\,\left( \frac{1}{2\left( \sqrt{1+\frac{1}{x}}+1
\right)}+\frac{1}{2\left( \sqrt{1+\frac{1}{x}}-1 \right)}
\right)=\frac{1}{2\left( \sqrt{2}+1 \right)}+\frac{1}{2\left( \sqrt{2}-1
\right)}=\frac{\sqrt{2}-1+\sqrt{2}+1}{2\left( \sqrt{2}+1 \right)\left(
\sqrt{2}-1 \right)}$
$=\frac{2\sqrt{2}}{2\left(
\sqrt{2}+1 \right)\left( \sqrt{2}-1 \right)}=\frac{\sqrt{2}}{2-1}=\sqrt{2}$ So $\int_{0}^{1}{\frac{\sqrt{x}}{\sqrt{x+1}}dx}=\sqrt{2}-\operatorname{arcsinh}\left(
1 \right)$
Therefore $\int_{0}^{1}{f\left(
x \right)dx}=\sqrt{2}-\operatorname{arcsinh}\left( 1
\right)+2\sqrt{2}-2=3\sqrt{2}-2-\operatorname{arcsinh}\left( 1 \right)$
*The idea of solution in finding the range is Credit to فراس الناصري*
No comments:
Post a Comment