Exercise:
Let $f,g$ be
two functions to be defined as follows:
\[f\left( x
\right)=\frac{x-\sin x}{{{x}^{3}}}\,\,\,\And \,\,g\left( x \right)=\frac{{{e}^{x}}-{{e}^{-x}}-2x}{x-\sin
x}\]
- Show that , $\underset{x\to 0}{\mathop{\lim }}\,f\left( x \right)=\frac{1}{6}$
- Deduce that , $\underset{x\to 0}{\mathop{\lim }}\,g\left( x \right)=2$
Solution:
Let $x=3z$ so $f\left( 3z \right)=\frac{3z-\sin \left( 3z \right)}{27{{z}^{3}}}$
Let $x=3z$ so $f\left( 3z \right)=\frac{3z-\sin \left( 3z \right)}{27{{z}^{3}}}$
but $\sin 3z=3{{\cos }^{2}}z\sin z-{{\sin
}^{3}}z=3\left( 1-{{\sin }^{2}}z \right)\sin z-{{\sin }^{3}}z$
$\Rightarrow \sin 3z=3\sin z-4{{\sin }^{3}}z$
Thus $f\left( 3z \right)=\frac{3z-3\sin z+4{{\sin
}^{3}}z}{27{{z}^{3}}}$ as $x\to
0\,\,,\,\,z\to 0$
So $\underset{x\to 0}{\mathop{\lim }}\,f\left( x
\right)=\underset{z\to 0}{\mathop{\lim }}\,f\left( 3z \right)=\underset{z\to
0}{\mathop{\lim }}\,\frac{3z-3\sin z+4{{\sin }^{3}}z}{27{{z}^{3}}}=\underset{z\to
0}{\mathop{\lim }}\,\frac{3\left( z-\sin z \right)}{27{{z}^{3}}}+\underset{z\to
0}{\mathop{\lim }}\,\frac{4{{\sin }^{3}}z}{27{{z}^{3}}}$
So $\underset{x\to 0}{\mathop{\lim }}\,\frac{x-\sin
x}{{{x}^{3}}}=\frac{1}{9}\underset{z\to 0}{\mathop{\lim }}\,\frac{z-\sin
z}{{{z}^{3}}}+\frac{4}{27}\underset{z\to 0}{\mathop{\lim }}\,\frac{{{\sin
}^{3}}z}{{{z}^{3}}}$ but $\underset{x\to
0}{\mathop{\lim }}\,\frac{\sin x}{x}=1$
Thus $\left( 1-\frac{1}{9} \right)\underset{x\to
0}{\mathop{\lim }}\,\frac{x-\sin x}{{{x}^{3}}}=\frac{4}{27}\Rightarrow
\underset{x\to 0}{\mathop{\lim }}\,\frac{x-\sin x}{{{x}^{3}}}=\frac{9}{8}\times
\frac{4}{27}=\frac{1}{6}$
2.
We have $g\left( x
\right)=\frac{{{e}^{x}}-{{e}^{-x}}-2x}{x-\sin x}=\frac{2\left(
\frac{{{e}^{x}}-{{e}^{-x}}}{2}-x \right)}{x-\sin x}=\frac{2\left( \sinh x-x
\right)}{x-\sin x}=\frac{\frac{2\sinh x-2x}{{{x}^{3}}}}{\frac{x-\sin
x}{{{x}^{3}}}}$
So \(\underset{x\to 0}{\mathop{\lim }}\,g\left( x
\right)=\underset{x\to 0}{\mathop{\lim }}\,\frac{\frac{2\sinh
x-2x}{{{x}^{3}}}}{\frac{x-\sin x}{{{x}^{3}}}}=\frac{\underset{x\to
0}{\mathop{\lim }}\,\frac{2\sinh x-2x}{{{x}^{3}}}}{\underset{x\to
0}{\mathop{\lim }}\,\frac{x-\sin x}{{{x}^{3}}}}=\frac{\underset{x\to
0}{\mathop{\lim }}\,\frac{2\sinh x-2x}{{{x}^{3}}}}{\frac{1}{6}}\)
$=\underset{x\to 0}{\mathop{\lim }}\,\frac{12\left(
\sinh x-x \right)}{{{x}^{3}}}=12\underset{x\to 0}{\mathop{\lim }}\,\frac{\sinh
x-x}{{{x}^{3}}}$ Take $x=3w$ as $x\to 0\,\,,\,\,w\to 0\,$
So $\underset{x\to 0}{\mathop{\lim }}\,\frac{\sinh
x-x}{{{x}^{3}}}=\underset{w\to 0}{\mathop{\lim }}\,\frac{\sinh \left( 3w
\right)-3w}{{{\left( 3w \right)}^{3}}}=\underset{w\to 0}{\mathop{\lim
}}\,\frac{\sinh \left( 3w \right)-3w}{27{{w}^{3}}}$
But $\sinh \left( 3w \right)=3{{\cosh }^{2}}w\sinh
w+{{\sinh }^{3}}w=3\sinh w+4{{\sinh }^{3}}w$
So $\underset{w\to 0}{\mathop{\lim }}\,\frac{\sinh
\left( 3w \right)-3w}{27{{w}^{3}}}=\underset{w\to 0}{\mathop{\lim
}}\,\frac{3\sinh w+4{{\sinh }^{3}}w-3w}{27{{w}^{3}}}$
$=\underset{w\to 0}{\mathop{\lim }}\,\frac{3\sinh
w-3w}{27{{w}^{3}}}+\underset{w\to 0}{\mathop{\lim }}\,\frac{4{{\sinh
}^{3}}w}{27{{w}^{3}}}$
So $\underset{x\to 0}{\mathop{\lim }}\,\frac{\sinh
x-x}{{{x}^{3}}}=\frac{1}{9}\underset{w\to 0}{\mathop{\lim }}\,\frac{\sinh
w-w}{{{w}^{3}}}+\frac{4}{27}\underset{w\to 0}{\mathop{\lim }}\,\frac{{{\sinh
}^{3}}w}{{{w}^{3}}}$ but $\underset{w\to 0}{\mathop{\lim }}\,\frac{\sinh
w}{w}=1$
So $\underset{x\to 0}{\mathop{\lim }}\,\frac{\sinh
x-x}{{{x}^{3}}}=\frac{4}{27}\times \frac{9}{8}=\frac{1}{6}$
Thus $\underset{x\to 0}{\mathop{\lim }}\,g\left( x
\right)=12\underset{x\to 0}{\mathop{\lim }}\,\frac{\sinh
x-x}{{{x}^{3}}}=\frac{12}{6}=2$
No comments:
Post a Comment