Exercise:
Show that , $\underset{x\to
0}{\mathop{\lim }}\,\frac{\sqrt{\cos \sqrt{x}}-1}{x}=\frac{-1}{4}$
Solution: we
have $\frac{\sqrt{\cos \sqrt{x}}-1}{x}=\frac{\sqrt{\cos \sqrt{x}}-1}{x}\times
\frac{\sqrt{\cos \sqrt{x}}+1}{\sqrt{\cos \sqrt{x}}+1}=\frac{\cos
\sqrt{x}-1}{x\left( \sqrt{\cos \sqrt{x}}+1 \right)}$
So $\underset{x\to
0}{\mathop{\lim }}\,\frac{\sqrt{\cos \sqrt{x}}-1}{x}=\underset{x\to
0}{\mathop{\lim }}\,\frac{\cos \sqrt{x}-1}{x\left( \sqrt{\cos \sqrt{x}}+1
\right)}=\underset{x\to 0}{\mathop{\lim }}\,\frac{\cos \sqrt{x}-1}{x}\times
\underset{x\to 0}{\mathop{\lim }}\,\frac{1}{\sqrt{\cos \sqrt{x}}+1}$
$=\underset{x\to
0}{\mathop{\lim }}\,\frac{\cos \sqrt{x}-1}{x}\times
\frac{1}{2}=\frac{1}{2}\underset{x\to 0}{\mathop{\lim }}\,\frac{\cos
\sqrt{x}-1}{x}$
We know that
${{\sin }^{2}}\theta =\frac{1}{2}\left( 1-\cos 2\theta \right)\Leftrightarrow 2{{\sin }^{2}}\left(
\frac{\theta }{2} \right)=1-\cos \theta $
put $\theta
=\sqrt{x}$
So $\cos
\sqrt{x}-1=-\left( 1-\cos \sqrt{x} \right)=-2{{\sin }^{2}}\left(
\frac{\sqrt{x}}{2} \right)$
Thus \(\underset{x\to
0}{\mathop{\lim }}\,\frac{\cos \sqrt{x}-1}{x}=-\underset{x\to 0}{\mathop{\lim
}}\,\frac{2{{\sin }^{2}}\left( \frac{\sqrt{x}}{2} \right)}{x}=-\underset{x\to
0}{\mathop{\lim }}\,\frac{2{{\sin }^{2}}\left( \frac{\sqrt{x}}{2}
\right)}{{{\left( \sqrt{x} \right)}^{2}}}\)
$=-\underset{x\to
0}{\mathop{\lim }}\,\frac{2{{\sin }^{2}}\left( \frac{\sqrt{x}}{2} \right)}{{{\left(
\frac{2\sqrt{x}}{2} \right)}^{2}}}=-\underset{x\to 0}{\mathop{\lim
}}\,\frac{2{{\sin }^{2}}\left( \frac{\sqrt{x}}{2} \right)}{4{{\left(
\frac{\sqrt{x}}{2} \right)}^{2}}}=-\frac{1}{2}\underset{x\to 0}{\mathop{\lim
}}\,\frac{{{\sin }^{2}}\left( \frac{\sqrt{x}}{2} \right)}{{{\left(
\frac{\sqrt{x}}{2} \right)}^{2}}}=-\frac{1}{2}$
Thus $\underset{x\to
0}{\mathop{\lim }}\,\frac{\sqrt{\cos \sqrt{x}}-1}{x}=\frac{1}{2}\underset{x\to
0}{\mathop{\lim }}\,\frac{\cos \sqrt{x}-1}{x}=\frac{1}{2}\times \frac{-1}{2}=\frac{-1}{4}$
No comments:
Post a Comment