Exercise:
Integrate, $\int{\frac{\ln
x}{{{x}^{2}}}dx}$ and $\int{\frac{\ln x}{\sqrt{x}}dx}$
Solution:
Let $y=\frac{\ln x}{x}\Rightarrow y'=\frac{-1}{{{x}^{2}}}\ln
x+\frac{1}{{{x}^{2}}}\Rightarrow \frac{\ln
x}{{{x}^{2}}}=-y'+\frac{1}{{{x}^{2}}}$
So $\int{\frac{\ln
x}{{{x}^{2}}}=\int{\left( -y'+\frac{1}{{{x}^{2}}}
\right)dx}=-\int{y'\,dx}+\int{\frac{1}{{{x}^{2}}}dx}}=-\int{\frac{dy}{dx}dx}+\int{\frac{1}{{{x}^{2}}}dx}$
So $\int{\frac{\ln
x}{{{x}^{2}}}dx}=-\int{dy+\int{\frac{1}{{{x}^{2}}}dx}=-y-\frac{1}{x}+c=-\frac{\ln
x}{x}-\frac{1}{x}+c}$
Let $y=\sqrt{x}\ln
x\Rightarrow y'=\frac{1}{2\sqrt{x}}\ln x+\frac{\sqrt{x}}{x}\Rightarrow
\frac{\ln x}{2\sqrt{x}}=y'-\frac{\sqrt{x}}{x}\Rightarrow \frac{\ln
x}{\sqrt{x}}=2y'-\frac{2\sqrt{x}}{x}$
So $\int{\frac{\ln
x}{\sqrt{x}}dx}=2\int{y'}dx-2\int{\frac{\sqrt{x}}{x}dx}=2y-2\int{{{x}^{-1/2}}dx}=-2\sqrt{x}\ln
x-4\sqrt{x}+c$
Imad Zak Method Technique for Integration :
Let $f$ be a
map defined to be $f\left( x \right)=\frac{\ln x}{g\left( x \right)}\,$
where $g\left(
x \right)\ne 0$ & $\deg \left( g\left( x \right) \right)=n\,\,,n\in
\mathbb{R}$
Put $y\left(
x \right)=\frac{\ln x}{h\left( x \right)}$ where $\deg \left( h\left( x \right)
\right)=\deg \left( g\left( x \right) \right)-1=n-1$
Then $\int{\frac{\ln
x}{g\left( x \right)}dx}=\int{\frac{dy}{dx}dx}+\int{\frac{d\left( \ln x
\right)}{dx}h\left( x \right)dx}$
No comments:
Post a Comment