Exercise:
If $\int{f'\left(
x \right)dx}={{x}^{2}}+3x+3$ and $f\left( 1 \right)=2$
Determine $f\left(
8 \right)$
Solution: we
have $\int{f'\left( x \right)dx}={{x}^{2}}+3x+3$
$\Rightarrow
f\left( x \right)={{x}^{2}}+3x+3+c$
but $f\left(
1 \right)=2\Rightarrow 2=1+3+3+c\Rightarrow 2-7=c\Rightarrow c=-5$
Thus $f\left(
x \right)={{x}^{2}}+3x-2$ so $f\left( 8 \right)={{8}^{2}}+3\left( 8
\right)-2=64+24-2=86$
No comments:
Post a Comment