Mixed Exercise with Series and integral ( asked in brilliant.org)


Exercise:

Evaluate, $\sum\limits_{i=1}^{\infty }{\int_{0}^{\frac{\pi }{4}}{{{\sin }^{i}}\left( x \right)dx}}$

Solution : Let $x\in \left[ 0,\frac{\pi }{4} \right]$ hence $\sin \left( x \right)>0$ thus $\left| \sin x \right|<1$

By Monotone Convergence theorem we obtain

$\sum\limits_{i=1}^{\infty }{\int_{0}^{\frac{\pi }{4}}{{{\sin }^{i}}\left( x \right)dx}=\int_{0}^{\frac{\pi }{4}}{\sum\limits_{i=1}^{\infty }{{{\sin }^{i}}\left( x \right)dx}}}$  Take $u\left( x \right)=\sin \left( x \right)$

So $\sum\limits_{i=1}^{\infty }{{{\sin }^{i}}\left( x \right)}=\sum\limits_{i=1}^{\infty }{{{u}^{i}}\left( x \right)}=\frac{u\left( x \right)}{1-u\left( x \right)}=\frac{\sin x}{1-\sin x}$ ( Geometric Series )

So$\sum\limits_{i=1}^{\infty }{{{\sin }^{i}}\left( x \right)}=\frac{\sin \left( x \right)}{1-\sin \left( x \right)}\times \frac{1+\sin \left( x \right)}{1+\sin \left( x \right)}=\frac{\sin \left( x \right)\left( 1+\sin \left( x \right) \right)}{1-{{\sin }^{2}}x}$

                    $=\frac{\sin x\left( 1+\sin x \right)}{{{\cos }^{2}}x}=\frac{\sin x+{{\sin }^{2}}x}{{{\cos }^{2}}x}=\frac{\sin x+1-{{\cos }^{2}}x}{{{\cos }^{2}}x}$

                    $=\frac{\sin x}{{{\cos }^{2}}x}+\frac{1}{{{\cos }^{2}}x}-1=\sec x\tan x+{{\sec }^{2}}x-1$

Hence $\sum\limits_{i=1}^{\infty }{\int_{0}^{\frac{\pi }{4}}{{{\sin }^{i}}\left( x \right)dx}=\int_{0}^{\frac{\pi }{4}}{\sum\limits_{i=1}^{\infty }{{{\sin }^{i}}\left( x \right)dx}}}=\int_{0}^{\frac{\pi }{4}}{\left( \sec x\tan x+{{\sec }^{2}}x-1 \right)dx}$

                               $=\int_{0}^{\frac{\pi }{4}}{\sec x\tan x\,dx}+\int_{0}^{\frac{\pi }{4}}{{{\sec }^{2}}x}\,dx-\int_{0}^{\frac{\pi }{4}}{dx}$

Let $u=\sec x\Leftrightarrow du=\sec x\tan x\,dx$ , $w=\tan x\Rightarrow dw={{\sec }^{2}}x\,dx$

So $\sum\limits_{i=1}^{\infty }{\int_{0}^{\frac{\pi }{4}}{{{\sin }^{i}}\left( x \right)dx}=}\int_{0}^{\frac{\pi }{4}}{d\left( \sec x \right)+\int_{0}^{\frac{\pi }{4}}{d\left( \tan x \right)-\left[ x \right]_{0}^{\frac{\pi }{4}}}}$

                           $=\left[ \sec x \right]_{0}^{^{\frac{\pi }{4}}}+\left[ \tan x \right]_{0}^{^{\frac{\pi }{4}}}-\left[ x \right]_{0}^{\frac{\pi }{4}}=\sqrt{2}-1+1-0-\frac{\pi }{4}$


                           $=\sqrt{2}-\frac{\pi }{4}=\frac{4\sqrt{2}-\pi }{4}$

No comments:

Post a Comment