Exercise:
Solve in $\mathbb{R}$
,${{x}^{\sqrt{x}}}={{\left( \sqrt{x} \right)}^{x}}$
Solution :
we have ${{x}^{\sqrt{x}}}={{\left( \sqrt{x} \right)}^{x}}$ taken logarithm both
sides to get $\sqrt{x}\ln x=x\ln \sqrt{x}=\frac{x}{2}\ln x$
So $\left(
2\sqrt{x}-x \right)\ln x=0$ $\Leftrightarrow 2\sqrt{x}-x=0\,\,\,or\,\,\,\ln
x=0$ $\Leftrightarrow 4x-{{x}^{2}}=0\,\,\,or\,\,\,\ln x=\ln 1$
$\Rightarrow
x=1\,\,or\,\,x\left( 4-x \right)=0$ $\Leftrightarrow x=0\,\,\,or\,\,\,x=4$ but $x\ne
0$ so the accepted roots are $x=\left\{ 1,4 \right\}$
No comments:
Post a Comment