Exercise:
Factorize ${{x}^{5}}+x+1$
Solution: ${{x}^{5}}+x+1={{x}^{5}}-{{x}^{2}}+{{x}^{2}}+x+1={{x}^{2}}\left(
{{x}^{3}}-1 \right)+{{x}^{2}}+x+1$
But ${{x}^{3}}-1=\left( x-1 \right)\left( {{x}^{2}}+x+1
\right)$ so ${{x}^{5}}+x+1={{x}^{2}}\left( x-1 \right)\left( {{x}^{2}}+x+1
\right)+{{x}^{2}}+x+1$
$=\left(
{{x}^{2}}+x+1 \right)\left( {{x}^{2}}\left( x-1 \right)+1 \right)=\left(
{{x}^{2}}+x+1 \right)\left( {{x}^{3}}-{{x}^{2}}+1 \right)$
nice
ReplyDeletenice
ReplyDeletethank you very much sir
ReplyDelete