Exercise:
$if\,$ $f\left(
x \right)+f'\left( x \right)={{x}^{3}}+{{x}^{2}}+x+1$
Determine
the expression for $f\left( x \right)$
Solution: Let $f\left( x \right)\in \mathbb{R}\left[ x
\right]$ then $f\left( x \right)=a{{x}^{3}}+b{{x}^{2}}+cx+d$ where $a,b,c,d\in
\mathbb{R}$
So $f'\left(
x \right)=3a{{x}^{2}}+2bx+c$ Now adding $f'\left( x \right)\,\,\And \,\,f\left(
x \right)$ to get :
$f\left( x
\right)+f'\left( x
\right)=a{{x}^{3}}+b{{x}^{2}}+cx+d+3a{{x}^{2}}+2bx+c={{x}^{3}}+{{x}^{2}}+x+1$
$\Rightarrow
f\left( x \right)+f'\left( x \right)=a{{x}^{3}}+{{x}^{2}}\left( b+3a
\right)+x\left( c+2b \right)+\left( d+c \right)={{x}^{3}}+{{x}^{2}}+x+1$
So $a=1\,\,,\,\,\,b+3a=1\,\,,\,\,c+2b=1\,\,,\,\,d+c=1$
$\Rightarrow a=1\,\,\,,\,\,b=-2\,\,\,,\,\,c=5\,\,\,,\,\,d=-4$
Thus $f\left(
x \right)={{x}^{3}}-2{{x}^{2}}+5x-4$
No comments:
Post a Comment