Exercise:
Integrate, $\int{\frac{dx}{{{\left(
1+\sin x \right)}^{2}}}}$
Solution: we
have $\frac{1}{{{\left( 1+\sin x \right)}^{2}}}\times \frac{{{\left( 1-\sin x
\right)}^{2}}}{{{\left( 1-\sin x \right)}^{2}}}=\frac{{{\left( 1-\sin x
\right)}^{2}}}{{{\left[ \left( 1+\sin x \right)\left( 1-\sin x \right)
\right]}^{2}}}=\frac{{{\left( 1-\sin x \right)}^{2}}}{{{\left( 1-{{\sin }^{2}}x
\right)}^{2}}}$
$=\frac{{{\left( 1-\sin x
\right)}^{2}}}{{{\left( {{\cos }^{2}}x \right)}^{2}}}=\frac{1-2\sin x+{{\sin
}^{2}}x}{{{\cos }^{4}}x}=\frac{1-2\sin x+1-{{\cos }^{2}}x}{{{\cos
}^{4}}x}=\frac{2-2\sin x-{{\cos }^{2}}x}{{{\cos }^{4}}x}$
$=\frac{2}{{{\cos
}^{4}}x}-2\frac{\sin x}{\cos x}\times \frac{1}{{{\cos }^{3}}x}-\frac{1}{{{\cos
}^{2}}x}=2{{\sec }^{4}}x-2\tan x{{\sec }^{3}}x-{{\sec }^{2}}x$
So $\int{\frac{dx}{{{\left(
1+\sin x \right)}^{2}}}=2\int{{{\sec }^{4}}x\,dx}-2\int{\tan x{{\sec
}^{3}}x\,dx-\int{{{\sec }^{2}}x\,dx}}}$
Let ${{A}_{1}}=\int{{{\sec
}^{4}}x\,dx}\,\,,\,\,{{A}_{2}}=\int{\tan x{{\sec }^{3}}x\,dx}\,\,\,\And
\,\,{{A}_{3}}=\int{{{\sec }^{2}}x\,dx}$
In ${{A}_{2}}$
we have $\int{\tan x{{\sec }^{3}}x\,dx}=\int{\tan x\sec x{{\sec }^{2}}x\,dx}$
Take $u=\sec
x\Leftrightarrow du=\tan x\sec x\,dx$
So ${{A}_{2}}=\int{\tan
x{{\sec }^{3}}xdx}=\int{{{u}^{2}}du=\frac{1}{3}{{u}^{3}}+c=\frac{1}{3}{{\sec
}^{3}}x+c}$
Take $u=\tan
x\Leftrightarrow du={{\sec }^{2}}x\,dx$ so ${{A}_{3}}=\int{{{\sec
}^{2}}xdx}=\int{d\left( \tan x \right)=\tan x+c}$
${{A}_{1}}=\int{{{\sec
}^{4}}xdx}=\int{{{\sec }^{2}}x{{\sec }^{2}}xdx}$ but ${{\sec }^{2}}x=1+{{\tan
}^{2}}x$
So ${{A}_{1}}=\int{\left(
1+{{\tan }^{2}}x \right){{\sec }^{2}}x}\,dx$ take $w=\tan x\Rightarrow
dw={{\sec }^{2}}xdx$
Thus ${{A}_{1}}=\int{\left(
1+{{u}^{2}} \right)du}=u+\frac{1}{3}{{u}^{3}}+c=\tan x+\frac{1}{3}{{\tan
}^{3}}x+c$
$\therefore
\int{\frac{dx}{{{\left( 1+\sin x \right)}^{2}}}=\tan x+\frac{2}{3}{{\tan }^{3}}x-\frac{2}{3}{{\sec
}^{3}}x+c}$
No comments:
Post a Comment