Exercise:
Integrate $\int{\frac{dx}{{{x}^{6}}+x}}$
Solution: we
have $\frac{1}{{{x}^{6}}+x}=\frac{1}{{{x}^{6}}\left( 1+{{x}^{-5}}
\right)}=\frac{{{x}^{-6}}}{1+{{x}^{-5}}}$
Let $u=1+{{x}^{-5}}\Rightarrow
du=-5{{x}^{-6}}dx$
So
$\int{\frac{dx}{{{x}^{6}}+x}}=\int{\frac{{{x}^{-6}}}{1+{{x}^{-5}}}dx}=-\frac{1}{5}\int{\frac{du}{u}=-\frac{1}{5}\ln
\left| u \right|+c}=-\frac{1}{5}\ln \left| 1+\frac{1}{{{x}^{5}}} \right|+c$
Exercise:
Integrate, $\int{\frac{dx}{{{x}^{2}}\sqrt{{{x}^{2}}-1}}}$
Solution:
Let $x=\sec \theta \Leftrightarrow dx=\sec \theta \tan \theta d\theta $
So $\int{\frac{dx}{{{x}^{2}}\sqrt{{{x}^{2}}-1}}=\int{\frac{\sec
\theta \tan \theta d\theta }{{{\sec }^{2}}\theta \sqrt{{{\sec }^{2}}\theta
-1}}=\int{\frac{\tan \theta }{\sec \theta \tan \theta }d\theta
=\int{\frac{1}{\sec \theta }d\theta }=\int{\cos \theta }}\,d\theta }}$
$=\sin
\theta +c$ but $x=\frac{1}{\cos \theta }\Rightarrow \cos \theta =\frac{1}{x}$
by Pythagoras identity $\sin \theta =\sqrt{1-\frac{1}{{{x}^{2}}}}$
$=\sqrt{1-\frac{1}{{{x}^{2}}}}+c=\sqrt{\frac{{{x}^{2}}-1}{{{x}^{2}}}}+c=\frac{\sqrt{{{x}^{2}}-1}}{x}+c$
No comments:
Post a Comment