Exercise:
Simplify , $\frac{{{\left(
\sqrt{2}-1 \right)}^{1-\sqrt{3}}}}{{{\left( \sqrt{2}+1 \right)}^{1+\sqrt{3}}}}$
Solution: we
know that $\left( \sqrt{2}+1 \right)\left( \sqrt{2}-1 \right)=2-1=1$
So $\frac{{{\left( \sqrt{2}-1
\right)}^{1-\sqrt{3}}}}{{{\left( \sqrt{2}+1 \right)}^{1+\sqrt{3}}}}\times
\frac{{{\left( \sqrt{2}+1 \right)}^{1-\sqrt{3}}}}{{{\left( \sqrt{2}+1
\right)}^{1-\sqrt{3}}}}=\frac{1}{{{\left( \sqrt{2}+1
\right)}^{1+\sqrt{3}+1-\sqrt{3}}}}=\frac{1}{{{\left( \sqrt{2}+1 \right)}^{2}}}$
$=\frac{1}{{{\left(
\sqrt{2}+1 \right)}^{2}}}\times \frac{{{\left( \sqrt{2}-1
\right)}^{2}}}{{{\left( \sqrt{2}-1 \right)}^{2}}}=\frac{{{\left( \sqrt{2}-1
\right)}^{2}}}{{{\left[ \left( \sqrt{2}+1 \right)\left( \sqrt{2}-1 \right)
\right]}^{2}}}$
$={{\left( \sqrt{2}-1
\right)}^{2}}=2+1-2\sqrt{2}=3-2\sqrt{2}$
No comments:
Post a Comment