Exercise:
Integrate, $\int{\frac{dx}{\sqrt{2+\sqrt{1+\sqrt{x}}}}}$
Solution: Let ${{w}^{2}}=2+\sqrt{1+\sqrt{x}}\Rightarrow {{\left(
{{w}^{2}}-2 \right)}^{2}}=1+\sqrt{x}$$\Rightarrow x={{\left[ {{\left(
{{w}^{2}}-2 \right)}^{2}}-1 \right]}^{2}}$
So $dx=2\left[ {{\left( {{w}^{2}}-2 \right)}^{2}}-1 \right]\left(
2\left( {{w}^{2}}-2 \right)2w \right)dw$ $=8w\left[ {{\left( {{w}^{2}}-2
\right)}^{2}}-1 \right]\left( {{w}^{2}}-2 \right)dw$
So $\int{\frac{dx}{\sqrt{2+\sqrt{1+\sqrt{x}}}}=\int{\frac{8w\left(
{{\left( {{w}^{2}}-2 \right)}^{2}}-1 \right)\left( {{w}^{2}}-2
\right)dw}{\sqrt{{{w}^{2}}}}}}$
$=8\int{\left(
{{\left( {{w}^{2}}-2 \right)}^{2}}-1 \right)\left( {{w}^{2}}-2 \right)dw}$
But $\left[
{{\left( {{w}^{2}}-2 \right)}^{2}}-1 \right]\left( {{w}^{2}}-2 \right)=\left[
{{w}^{4}}-4{{w}^{2}}+4-1 \right]\left( {{w}^{2}}-2 \right)$
$={{w}^{6}}-6{{w}^{4}}+11{{w}^{2}}-6$
So $\int{\frac{dx}{\sqrt{2+\sqrt{1+\sqrt{x}}}}=8\int{{{w}^{6}}dw}-48\int{{{w}^{4}}dw+88\int{{{w}^{2}}dw-48\int{dw}}}}$
$=\frac{8}{7}{{w}^{7}}-\frac{48}{5}{{w}^{5}}+\frac{88}{3}{{w}^{3}}-48w+c$
$=\frac{8}{7}{{\left(
\sqrt{2+\sqrt{1+\sqrt{x}}} \right)}^{7}}-\frac{48}{5}{{\left(
\sqrt{2+\sqrt{1+\sqrt{x}}} \right)}^{5}}+\frac{88}{3}{{\left(
\sqrt{2+\sqrt{1+\sqrt{x}}} \right)}^{3}}-48\sqrt{2+\sqrt{1+\sqrt{x}}}+c$
No comments:
Post a Comment