Exercise:
Integrate, $\int{\cos
x{{\sin }^{2}}x{{e}^{\sin x}}dx}$
Solution:
Let $u=\sin x\Rightarrow du=\cos x\,dx$ , so $\int{\cos x{{\sin
}^{2}}x{{e}^{\sin x}}dx}=\int{{{u}^{2}}{{e}^{u}}du}$
Now apply by
parts integrations let $U={{u}^{2}}\,\And \,dW={{e}^{u}}du$ $\Rightarrow
dU=2u\,du\,\And \,W={{e}^{u}}$
$\int{{{u}^{2}}{{e}^{u}}du}={{u}^{2}}{{e}^{u}}-2\int{u{{e}^{u}}du}$
Again take $y=u\,\And \,df={{e}^{u}}du$ $\Rightarrow dy=du\,\And \,f={{e}^{u}}$
$={{u}^{2}}{{e}^{u}}-2\left(
u{{e}^{u}}-\int{{{e}^{u}}du}
\right)={{u}^{2}}{{e}^{u}}-2u{{e}^{u}}+2{{e}^{u}}+c={{e}^{\sin x}}\left( {{\sin
}^{2}}x-2\sin x+2 \right)+c$
No comments:
Post a Comment