Exercise:
Evaluate, $2\cos
\left( i\ln 4 \right)+2{{\sin }^{2}}\left( i\ln 2 \right)+i\sin \left( i\ln 4
\right)$ where $i\in \mathbb{C}$ such that ${{i}^{2}}=-1$
Solution: we
know that $\ln 4=\ln {{2}^{2}}=2\ln 2$ and ${{\sin }^{2}}\theta =\frac{1-\cos
2\theta }{2}$
So $2\cos
\left( i\ln 4 \right)+2{{\sin }^{2}}\left( i\ln 2 \right)+i\sin \left( i\ln 4
\right)$ $=2\cos \left( i\ln 4 \right)+\left( 1-\cos \left( 2\left( i\ln 2
\right) \right) \right)+i\sin \left( i\ln 4 \right)$
$=1+2\cos
\left( i\ln 4 \right)-\cos \left( 2\left( i\ln 2 \right) \right)+i\sin \left(
i\ln 4 \right)$ $=1+2\cos \left( i\ln 4 \right)-\cos \left( i\ln 4
\right)+i\sin \left( i\ln 4 \right)$
$=1+\cos
\left( i\ln 4 \right)+i\sin \left( i\ln 4 \right)$ $=1+{{e}^{i\left( i\ln 4
\right)}}=1+{{e}^{-\ln 4}}=1+{{e}^{\ln {{4}^{-1}}}}=1+\frac{1}{4}=\frac{5}{4}$
No comments:
Post a Comment