Exercise:
Let $p\in
\mathbb{Z}$ such that $\frac{{{a}^{p}}+{{b}^{p}}}{{{c}^{p}}+{{d}^{p}}}=\frac{a+b}{c+d}$
where $a,b,c,d>0$
Show that , $p=-1$
Solution: Put
$p=-k$ \(\Leftrightarrow
\frac{{{a}^{p}}+{{b}^{p}}}{{{c}^{p}}+{{d}^{p}}}=\frac{{{a}^{-k}}+{{b}^{-k}}}{{{c}^{-k}}+{{d}^{-k}}}\times
\frac{{{\left( abcd \right)}^{k}}}{{{\left( abcd
\right)}^{k}}}=\frac{{{a}^{-k+k}}{{\left( bcd
\right)}^{k}}+{{b}^{-k+k}}{{\left( acd \right)}^{k}}}{{{c}^{-k+k}}{{\left( adb
\right)}^{k}}+{{d}^{-k+k}}{{\left( abc \right)}^{k}}}=\frac{{{\left( cd
\right)}^{k}}\left( {{b}^{k}}+{{a}^{k}} \right)}{{{\left( ab
\right)}^{k}}\left( {{d}^{k}}+{{c}^{k}} \right)}=\frac{{{a}^{k}}+{{b}^{k}}}{{{c}^{k}}+{{d}^{k}}}\)
Hence $\frac{{{a}^{-k}}+{{b}^{-k}}}{{{c}^{-k}}+{{d}^{-k}}}=\frac{{{a}^{k}}+{{b}^{k}}}{{{c}^{k}}+{{d}^{k}}}$
Now for $k=1$
we get $\frac{{{a}^{-1}}+{{b}^{-1}}}{{{c}^{-1}}+{{d}^{-1}}}=\frac{a+b}{c+d}$ thus
$p=-1$
No comments:
Post a Comment