Integral Exercise Mixed



Exercise:

Integrate , $\int{\frac{dx}{{{\left( {{x}^{2}}+4x+13 \right)}^{5}}}}$

Solution: we have ${{x}^{2}}+4x+13={{x}^{2}}+4x+4-4+13={{\left( x+2 \right)}^{2}}+9$

So $\int{\frac{dx}{{{\left( {{x}^{2}}+4x+13 \right)}^{5}}}=\int{\frac{dx}{{{\left( {{\left( x+2 \right)}^{2}}+9 \right)}^{5}}}}}$

Take $x+2=3\tan \theta \Leftrightarrow dx=3{{\sec }^{2}}\theta d\theta $

Hence $\int{\frac{dx}{{{\left( {{\left( x+2 \right)}^{2}}+9 \right)}^{5}}}}=\int{\frac{3{{\sec }^{2}}\theta d\theta }{{{\left( 9{{\tan }^{2}}\theta +9 \right)}^{5}}}=\int{\frac{3{{\sec }^{2}}\theta d\theta }{{{9}^{5}}{{\left( {{\tan }^{2}}\theta +1 \right)}^{5}}}}}$

$=\frac{3}{{{3}^{10}}}\int{\frac{{{\sec }^{2}}\theta d\theta }{{{\sec }^{10}}\theta }}=\frac{1}{{{3}^{9}}}\int{\frac{d\theta }{{{\sec }^{8}}\theta }}=\frac{1}{{{3}^{9}}}\int{{{\cos }^{8}}\theta }d\theta $

We know that ${{\cos }^{2}}\theta =\frac{1+\cos 2\theta }{2}$

So ${{\cos }^{8}}\theta ={{\left( {{\cos }^{2}}\theta  \right)}^{4}}={{\left( \frac{1}{2}\left( 1+\cos 2\theta  \right) \right)}^{4}}=\frac{1}{16}{{\left( 1+\cos 2\theta  \right)}^{4}}$

But ${{\left( 1+w \right)}^{4}}={{w}^{4}}+4{{w}^{3}}+6{{w}^{2}}+4w+1$

Hence ${{\left( 1+\cos 2\theta  \right)}^{4}}={{\cos }^{4}}2\theta +4{{\cos }^{3}}2\theta +6{{\cos }^{2}}2\theta +4\cos 2\theta +1$

Thus \(\int{{{\cos }^{8}}\theta }\,d\theta =\frac{1}{16}\int{{{\cos }^{4}}2\theta \,d\theta +\frac{1}{4}\int{{{\cos }^{3}}2\theta +\frac{6}{16}\int{{{\cos }^{2}}2\theta \,d\theta +\frac{1}{8}\sin 2\theta +\frac{\theta }{16}+c}}}\)

But $\int{{{\cos }^{2}}2\theta d\theta =\frac{1}{2}\int{\left( 1+\cos 4\theta  \right)d\theta }=\frac{\theta }{2}+\frac{1}{8}\sin 4\theta +c}$                          

Also $\int{{{\cos }^{3}}2\theta \,d\theta }=\int{\cos 2\theta \,{{\cos }^{2}}2\theta \,d\theta }=\int{\cos 2\theta \left( 1-{{\sin }^{2}}2\theta  \right)d\theta }$  

Let $u=\sin 2\theta \Leftrightarrow du=2\cos \left( 2\theta  \right)d\theta $

So $\int{{{\cos }^{3}}2\theta \,d\theta }=\frac{1}{2}\int{\left( 1-{{u}^{2}} \right)du}=\frac{1}{2}u-\frac{1}{6}{{u}^{3}}+c=\frac{1}{2}\sin 2\theta -\frac{1}{6}{{\sin }^{3}}2\theta +c$               

Finally $\int{{{\cos }^{4}}2\theta \,d\theta }=\int{{{\left( {{\cos }^{2}}2\theta  \right)}^{2}}d\theta }=\frac{1}{4}\int{{{\left( 1+\cos 4\theta  \right)}^{2}}d\theta }=\frac{1}{4}\int{\left( 1+{{\cos }^{2}}4\theta +2\cos 4\theta  \right)d\theta }$

$=\frac{1}{4}\theta +\frac{1}{4}\int{{{\cos }^{2}}4\theta \,d\theta +\frac{1}{8}\sin 4\theta +c}$

But $\int{{{\cos }^{2}}4\theta \,d\theta }=\frac{1}{2}\int{\left( 1+\cos 8\theta  \right)d\theta }=\frac{\theta }{2}+\frac{1}{16}\sin 8\theta +c$

Thus $\int{{{\cos }^{4}}2\theta d\theta }=\frac{\theta }{4}+\frac{\theta }{8}+\frac{\sin 8\theta }{64}+\frac{1}{8}\sin 4\theta +c$                            

Thus $\int{{{\cos }^{8}}\theta \,d\theta }=\frac{\theta }{64}+\frac{\theta }{128}+\frac{\sin 8\theta }{1024}+\frac{\sin 4\theta }{128}+\frac{\sin 2\theta }{8}-\frac{{{\sin }^{3}}2\theta }{24}+\frac{3\theta }{16}+\frac{\sin 4\theta }{16}+c$

$=\frac{27}{128}\theta +\frac{\sin 8\theta }{1024}+\frac{9\sin 4\theta }{128}+\frac{\sin 2\theta }{8}-\frac{{{\sin }^{3}}2\theta }{24}+c$

Thus $\int{\frac{dx}{{{\left( {{x}^{2}}+4x+13 \right)}^{5}}}=\frac{\theta }{93312}+\frac{\sin 8\theta }{20155392}+\frac{\sin 4\theta }{279936}+\frac{\sin 2\theta }{157464}-\frac{{{\sin }^{3}}2\theta }{472392}+c}$ 

No comments:

Post a Comment