Exercise:
If $x+y=1\,\,\,\,\And
\,\,\,{{x}^{2}}+{{y}^{2}}=2$ , Evaluate ${{x}^{3}}+{{y}^{3}}$
Solution: we
know that ${{\left( x+y
\right)}^{3}}={{x}^{3}}+{{y}^{3}}+3{{x}^{2}}y+3x{{y}^{2}}$
So ${{x}^{3}}+{{y}^{3}}+3\left(
{{x}^{2}}y+x{{y}^{2}} \right)=1\Leftrightarrow {{x}^{3}}+{{y}^{3}}=1-3\left(
{{x}^{2}}y+x{{y}^{2}} \right)$
But ${{x}^{2}}=2-{{y}^{2}}\Leftrightarrow
{{x}^{3}}+{{y}^{3}}=1-3\left( \left( 2-{{y}^{2}} \right)y+x{{y}^{2}} \right)$
$\Leftrightarrow
{{x}^{3}}+{{y}^{3}}=1-3\left( 2y-{{y}^{3}} \right)-3x\left( 2-{{x}^{2}}
\right)=1-6y+3{{y}^{3}}-6x+3{{x}^{3}}$
$\Leftrightarrow
{{x}^{3}}+{{y}^{3}}=1-6\left( y+x \right)+3\left( {{x}^{3}}+{{y}^{3}}
\right)\Leftrightarrow -2\left( {{x}^{3}}+{{y}^{3}}
\right)=1-6=-5\Leftrightarrow {{x}^{3}}+{{y}^{3}}=\frac{5}{2}$
No comments:
Post a Comment