Exercise:
Determine the value of 3√√5+2−3√√5−2
Solution: Let x=3√√5+2−3√√5−2⇔x−3√√5+2+3√√5−2=0
Using the property that states if a+b+c=0⇔a3+b3+c3=3abc ( its proof trivial )
So x3−√5−2+√5−2=3(x)(3√−(√5−2)(√5+2))
⇔x3−4=3x3√−(5−4)=3x⇔x3+3x−4=0
Put p(x)=x3+3x−4 so the divisors of 4 are {±1,±2,±4} hence p(1)=0
Thus p(x)=(x−1)(ax2+bx+c)=ax3+(b−a)x2+(c−b)x−c=x3+3x−4
So a=1,b−a=0,c−b=3,−c=−4 thus {a,b,c}={1,1,4}
Hence p(x)=(x−1)(x2+x+4) thus p(x)=0⇔x=1
Therefore 3√√5+2−3√√5−2=1
No comments:
Post a Comment