Loading [MathJax]/jax/output/CommonHTML/jax.js

Pages

Finding the value of given Expression using property



Exercise:

Determine the value of 35+2352

Solution: Let x=35+2352x35+2+352=0

Using the property that states if a+b+c=0a3+b3+c3=3abc ( its proof trivial )

So x352+52=3(x)(3(52)(5+2))

x34=3x3(54)=3xx3+3x4=0

Put p(x)=x3+3x4 so the divisors of 4 are {±1,±2,±4} hence p(1)=0

Thus p(x)=(x1)(ax2+bx+c)=ax3+(ba)x2+(cb)xc=x3+3x4 

So a=1,ba=0,cb=3,c=4 thus {a,b,c}={1,1,4} 

Hence p(x)=(x1)(x2+x+4) thus p(x)=0x=1 

Therefore 35+2352=1 

No comments:

Post a Comment