Loading [MathJax]/jax/output/CommonHTML/jax.js

Pages

Application for IVT , Nice exercise asked in 2008


  Exercise:
   
     Consider a function f:RR defined by f(x)=x3+2ex+c
   
     What condition should the real number c satisfy so that f  has root in [0,1]
   
     Solution: first of all ,f  is continuous function as ex  is continuous and fis a polynomial of degree 3 ,
   
     So f(x)=3x2+2ex>0 hence f is strictly increasing function
   
     Also we need to have f(0)×f(1)0 also satisfied for IVT
   
     So f(0)=0+2e0+c=2+c and f(1)=1+2e+c
   
     Thus by IVT f has root in [0,1] when f(0)×f(1)=(2+c)(1+2e+c)0
   
     So the roots for c are : c=2orc=(1+2e)
   
     Using sign table
   
     c|12e2+_c+2||0+_c+2e+1|0+|+_Result|+0|0|+
   
     So f(0)×f(1)=(2+c)(1+2e+c)0 has root in [0,1] when c[12e,2]

No comments:

Post a Comment