Exercise:
Let $f:\mathbb{R}\to \mathbb{R}$ be a function defined to be $\left( f\circ f \right)\left( x \right)={{x}^{2}}-x+1$
Determine the form of $f\left( x \right)$ then deduce the value of $f\left( 0 \right)$
Solution: we have $\left( f\circ f \right)\left( x \right)=f\left( f\left( x \right) \right)={{x}^{2}}-x+1$
As this expression is quadratic so take $f\left( x \right)=ax+b$ where $a,b\in \mathbb{R}$
Hence $f\left( f\left( x \right) \right)=f\left( ax+b \right)=ax\left( ax+b \right)+b={{a}^{2}}{{x}^{2}}+abx+b$
but $f\left( f\left( x \right) \right)={{x}^{2}}-x+1={{a}^{2}}{{x}^{2}}+abx+b$
by compression we get ${{a}^{2}}=1\,\,,\,\,\,ab=-1\,\,\And \,\,b=1$ hence $a=-1$
so $f\left( x \right)=-x+1$ hence $f\left( 0 \right)=1$
No comments:
Post a Comment