Exercise:
Show that, $\int_{0}^{a}{\frac{f\left( x \right)}{f\left( x \right)+f\left( a-x \right)}=}\frac{a}{2}$
Solution: Let $I=\int_{0}^{a}{\frac{f\left( x \right)}{f\left( x \right)+f\left( a-x \right)}}$ (*)
Now by using the property $\int_{a}^{b}{f\left( x \right)dx}=\int_{a}^{b}{f\left( \left( a+b \right)-x \right)dx}$
So $I=\int_{0}^{a}{\frac{f\left( a-x \right)}{f\left( a-x \right)+f\left( x \right)}dx}$ (**)
Adding (*) and (**) we get :
$2I=\int_{0}^{a}{\frac{f\left( x \right)+f\left( a-x \right)}{f\left( a-x \right)+f\left( x \right)}dx=\int_{0}^{a}{dx}}=a$ thus $I=\frac{a}{2}$
No comments:
Post a Comment