Exercise:
Integrate , $\int{{{e}^{x}}\frac{1+\sin
x}{1+\cos x}\,dx}$
Solution: we
know that $1+\cos 2\theta =2{{\cos }^{2}}\theta $ so put $\theta =\frac{x}{2}$
to get $1+\cos x=2{{\cos }^{2}}\left( \frac{x}{2} \right)$
Also we have
$\sin 2\theta =2\sin \theta \cos \theta $ so by taking $\theta =\frac{x}{2}$ we
get $\sin x=2\sin \left( \frac{x}{2} \right)\cos \left( \frac{x}{2} \right)$
Hence $\int{{{e}^{x}}\frac{1+\sin
x}{1+\cos x}dx}=\int{{{e}^{x}}\frac{1+2\sin \left( \frac{x}{2} \right)\cos
\left( \frac{x}{2} \right)}{2{{\cos }^{2}}\left( \frac{x}{2}
\right)}\,dx}=\int{\frac{1}{2}{{e}^{x}}{{\sec }^{2}}\left( \frac{x}{2}
\right)\,dx}+\int{{{e}^{x}}\tan \left( \frac{x}{2} \right)\,dx}$
Let $u=\tan
\left( \frac{x}{2} \right)\,\,\And \,\,dv={{e}^{x}}\Leftrightarrow
du=\frac{1}{2}{{\sec }^{2}}\left( \frac{x}{2} \right)dx\,\,\And \,v={{e}^{x}}$
So $\int{{{e}^{x}}\tan
\left( \frac{x}{2} \right)\,dx}={{e}^{x}}\tan \left( \frac{x}{2}
\right)-\int{\frac{1}{2}{{e}^{x}}{{\sec }^{2}}\left( \frac{x}{2} \right)\,dx}$
Hence $\int{{{e}^{x}}\frac{1+\sin
x}{1+\cos x}\,dx}=\frac{1}{2}\int{{{e}^{x}}{{\sec }^{2}}\left( \frac{x}{2} \right)\,dx}+{{e}^{x}}\tan
\left( \frac{x}{2} \right)-\frac{1}{2}\int{{{e}^{x}}{{\sec }^{2}}\left(
\frac{x}{2} \right)\,dx}$
Thus $\int{{{e}^{x}}\frac{1+\sin
x}{1-\cos x}\,dx}={{e}^{x}}\tan \left( \frac{x}{2} \right)\,+c$
No comments:
Post a Comment