Exercise:
Integrate, $\int{\frac{1-\sin
x}{1+\sin x}dx}$ then deduce $\int_{0}^{\pi
}{\frac{1-\sin x}{1+\sin x}dx=4-\pi }$
Solution: we have $\frac{1-\sin x}{1+\sin
x}=\frac{1}{1+\sin x}-\frac{\sin x+1-1}{1+\sin x}=\frac{1}{1+\sin
x}-1+\frac{1}{1+\sin x}=\frac{2}{1+\sin x}-1$
So $\int{\frac{1-\sin x}{1+\sin
x}\,dx}=\int{\frac{2}{1+\sin x}dx}-\int{\,dx}=\int{\frac{2}{1+\sin x}\,dx}-x+c$
we know
that $\sin x=\frac{2\tan \left( \frac{x}{2} \right)}{1+{{\tan }^{2}}\left(
\frac{x}{2} \right)}$ and put $u=\tan \left( \frac{x}{2} \right)$ so we get $\sin
x=\frac{2u}{1+{{u}^{2}}}$
so $1+\sin
x=1+\frac{2u}{1+{{u}^{2}}}=\frac{1+{{u}^{2}}+2u}{1+{{u}^{2}}}=\frac{{{\left(
1+u \right)}^{2}}}{1+{{u}^{2}}}$
Taking $u=\tan
\left( \frac{x}{2} \right)$ $\Rightarrow du=\frac{1}{2}{{\sec }^{2}}\left(
\frac{x}{2} \right)dx$ and we now that ${{\sec }^{2}}\theta =1+{{\tan
}^{2}}\theta $
Thus $2du=\left( 1+{{\tan }^{2}}\frac{x}{2}
\right)dx\Leftrightarrow 2du=\left( 1+{{u}^{2}} \right)dx$
So \[\int{\frac{2}{1+\sin
x}dx}=2\int{\frac{1+{{u}^{2}}}{{{\left( 1+u \right)}^{2}}}\times
\frac{2}{1+{{u}^{2}}}du=4\int{\frac{1}{{{\left( 1+u \right)}^{2}}}du}}\]
But $\int{\frac{1}{{{\left( 1+u
\right)}^{2}}}du}=\int{\frac{1}{{{\left( 1+u \right)}^{2}}}d\left( 1+u
\right)=}-\frac{1}{1+u}+c$
So $\int{\frac{1-\sin x}{1+\sin
x}dx}=-\frac{4}{1+\tan \left( \frac{x}{2} \right)}-x+c$
But $\underset{x\to 0}{\mathop{\lim }}\,\left(
-\frac{4}{1+\tan \left( \frac{x}{2} \right)}-x \right)=-4$ & $\underset{x\to
\pi }{\mathop{\lim }}\,\left( -\frac{4}{1+\tan \left( \frac{x}{2} \right)}-x
\right)=-\pi $
Thus $\int_{0}^{\pi }{\frac{1-\sin x}{1+\sin
x}\,dx}=-\pi -\left( -4 \right)=4-\pi $
No comments:
Post a Comment