Solution: Let $x={{\tan }^{2}}\theta $ as $x\to
3\Rightarrow \tan \theta \to \sqrt{3}$
So $\underset{x\to 3}{\mathop{\lim
}}\,\frac{{{x}^{2}}-3x}{x-\sqrt{x+1}-}=\underset{\tan \theta \to \sqrt{3}}{\mathop{\lim
}}\,\frac{{{\tan }^{2}}\theta \left( {{\tan }^{2}}\theta -3 \right)}{{{\tan
}^{2}}\theta -\sqrt{{{\tan }^{2}}\theta +1}-1}$
but ${{\tan }^{2}}\theta +1={{\sec
}^{2}}\theta $
Hence $\underset{\tan \theta \to
\sqrt{3}}{\mathop{\lim }}\,\frac{{{\tan }^{2}}\theta \left( {{\tan }^{2}}\theta
-3 \right)}{{{\tan }^{2}}\theta -\sqrt{{{\tan }^{2}}\theta
+1}-1}=\underset{\tan \theta \to \sqrt{3}}{\mathop{\lim }}\,\frac{\left( {{\sec
}^{2}}\theta -1 \right)\left( {{\sec }^{2}}\theta -1-3 \right)}{{{\sec
}^{2}}\theta -1-\sec \theta -1}$
$=\underset{\tan \theta \to \sqrt{3}}{\mathop{\lim
}}\,\frac{\left( {{\sec }^{2}}\theta -1 \right)\left( {{\sec }^{2}}\theta -4
\right)}{{{\sec }^{2}}\theta -\sec \theta -2}=\underset{\tan \theta \to
\sqrt{3}}{\mathop{\lim }}\,\frac{\left( {{\sec }^{2}}\theta -1 \right)\left(
\sec \theta -2 \right)\left( \sec \theta +2 \right)}{\left( \sec \theta +1
\right)\left( \sec \theta -2 \right)}$
$=\underset{\tan \theta \to \sqrt{3}}{\mathop{\lim
}}\,\frac{\left( \sec \theta -1 \right)\left( \sec \theta +1 \right)\left( \sec
\theta +2 \right)}{\sec \theta +1}=\underset{\sec \theta \to 2}{\mathop{\lim
}}\,\left( \sec \theta -1 \right)\left( \sec \theta +2 \right)=4$
for a different approach:
ReplyDeletecheck this: http://www.i-algebra.com/2015/03/a-different-approach-to-solution-by.html