Pages

Nice exercise -Secondary Classes -Exams


Exercise:

Solve in $\mathbb{R}$,

1)      $\sqrt{x}-\left| x-2 \right|<1$

2)      ${{\sin }^{4}}x+{{\cos }^{4}}x=1$

3)      $\sum\nolimits_{i=0}^{5}{{{\left( -1 \right)}^{i+1}}{{x}^{i}}=0}$

Solution:

1)      We know that, if $\sqrt{f\left( x \right)}<g\left( x \right)$ then $g\left( x \right)>0$

So that, $1+\left| x-2 \right|>0\Leftrightarrow \left| x-2 \right|>-1$  true for all $x$

Notice that, the domain of this equation $x\ge 0$ 

So that there are 2 cases  considered in this study

Case 1: $x>2$

$\sqrt{x}-\left| x-2 \right|<1\Leftrightarrow \sqrt{x}-x+2<1\Leftrightarrow \sqrt{x}-x+1<0\Leftrightarrow {{x}^{2}}-3x+1>0$

So that, $x>\frac{3+\sqrt{5}}{2}$

Case 2: $x<2$

$\sqrt{x}-\left| x-2 \right|<1\Leftrightarrow \sqrt{x}+x-2<1\Leftrightarrow \sqrt{x}+x-3<0\Leftrightarrow {{x}^{2}}-7x+9>0$

So that, $0\le x<\frac{7-\sqrt{13}}{2}$

2)      We have ${{\sin }^{4}}x+{{\cos }^{4}}x=1\Leftrightarrow {{\left( {{\sin }^{2}}x \right)}^{2}}+{{\left( {{\cos }^{2}}x \right)}^{2}}=1$

$\Leftrightarrow {{\left( {{\sin }^{2}}x+{{\cos }^{2}}x \right)}^{2}}=1+2{{\sin }^{2}}x{{\cos }^{2}}x\Leftrightarrow 2{{\sin }^{2}}x{{\cos }^{2}}x=0$  

$\Leftrightarrow \sqrt{2}\sin x\cos x=0\Leftrightarrow \sin x=0\,\,or\,\,\,\cos x=0\Leftrightarrow x=0\,\,or\,\pi +2k\pi \,\,or\,\,x=\pm \frac{\pi }{2}+2k\pi \,\,,\,\,k\in \mathbb{Z}$

Or we can use factorization without going complete squaring as follows

${{\sin }^{4}}x+{{\cos }^{4}}x=1\Leftrightarrow {{\cos }^{4}}x=1-{{\sin }^{4}}x=\left( 1-{{\sin }^{2}}x \right)\left( 1+{{\sin }^{2}}x \right)={{\cos }^{2}}x\left( 1+{{\sin }^{2}}x \right)$

so that, ${{\cos }^{2}}x\left[ {{\cos }^{2}}x-\left( 1+{{\sin }^{2}}x \right) \right]=0\Leftrightarrow {{\cos }^{2}}x\left( \cos 2x-1 \right)=0$

$\Leftrightarrow x=\pm \frac{\pi }{2}+2k\pi \,\,or\,\,x=0+k\pi $ with $k\in \mathbb{Z}$

3)      $S=\sum\nolimits_{i=0}^{5}{{{\left( -1 \right)}^{i+1}}{{x}^{i}}=-1+x-{{x}^{2}}+{{x}^{3}}-{{x}^{4}}+{{x}^{5}}}=0$

Note that, the above series is geometric with common ratio is $-x$ and initial value $-1$

So that, $S=\sum\nolimits_{i=0}^{n-1}{a{{r}^{i}}}=-\left( \frac{1-{{\left( -x \right)}^{6}}}{1+x} \right)=0\Leftrightarrow 1-{{x}^{6}}=0\Leftrightarrow {{x}^{6}}=1\Leftrightarrow x=1$ 

No comments:

Post a Comment