Exercise:
Show that, $11\int_{0}^{1}{\prod\limits_{i=1}^{10}{\left( x+i \right)}\,dx}<{{6}^{11}}$
Solution: we know that there is a relation between athematic mean and geometric mean
So $AM\ge GM\Leftrightarrow \frac{\sum\limits_{i=1}^{10}{\left( x+i \right)}}{10}\ge \sqrt[10]{\prod\limits_{i=1}^{10}{\left( x+i \right)}}$
But $\sum\limits_{i=1}^{10}{\left( x+i \right)=\sum\limits_{i=1}^{10}{x}+\sum\limits_{i=1}^{10}{i}=10x+\sum\limits_{i=1}^{10}{i}=10x+\frac{10\times 11}{2}=10x+55}$
So $\frac{10x+55}{10}\ge \sqrt[10]{\prod\limits_{i=1}^{10}{\left( x+i \right)}}\Leftrightarrow {{\left( x+\frac{55}{10} \right)}^{10}}\ge \prod\limits_{i=1}^{10}{\left( x+i \right)}$
$\Leftrightarrow \int_{0}^{1}{{{\left( x+\frac{55}{10} \right)}^{10}}dx\ge \int_{0}^{1}{\prod\limits_{i=1}^{10}{\left( x+i \right)dx}}}$
Let $u=x+\frac{55}{10}\Leftrightarrow du=dx$
So $\int_{0}^{1}{{{\left( x+\frac{55}{10} \right)}^{10}}dx}=\int_{\frac{11}{2}}^{\frac{13}{2}}{{{u}^{10}}du}=\frac{1}{11}\left( {{u}^{11}} \right)_{\frac{11}{2}}^{\frac{13}{2}}=\frac{1}{11}\left( {{\left( \frac{13}{2} \right)}^{11}}-{{\left( \frac{11}{2} \right)}^{11}} \right)=\frac{1}{11}\left( \frac{{{13}^{11}}-{{11}^{11}}}{{{2}^{11}}} \right)$
So $11\int_{0}^{1}{\prod\limits_{i=1}^{10}{\left( x+i \right)dx}\le \frac{{{13}^{11}}-{{11}^{11}}}{{{2}^{11}}}}$
Observe that, $12>2\Leftrightarrow {{12}^{11}}>{{2}^{11}}\Leftrightarrow {{12}^{11}}>{{\left( 13-11 \right)}^{11}}$
But ${{\left( 13-11 \right)}^{11}}<{{13}^{11}}-{{11}^{11}}$ so ${{12}^{11}}<{{13}^{11}}-{{11}^{11}}$
Also ${{12}^{11}}={{\left( 2\times 6 \right)}^{11}}={{2}^{11}}\times {{6}^{11}}<{{13}^{11}}-{{11}^{11}}\Leftrightarrow {{6}^{11}}<\frac{{{13}^{11}}-{{11}^{11}}}{{{2}^{11}}}$
Thus $11\int_{0}^{1}{\prod\limits_{i=1}^{10}{\left( x+i \right)dx<{{6}^{11}}}}$ Q.E.D
*_____________________
The idea of solution credit to Diego Alvariz
No comments:
Post a Comment