Exercise:
Solve in R , (log2(−x))2−5log2x2+25=0
Solution: Let t=log2(−x) & 5log2x2=10log2x=10log2|−x|
So t2−10t+25=0⇔t2−2(5)t+25=0⇔(t−5)2=0⇔t=5
So log2(−x)=5⇔log2(−x)=5log22⇔−x=25⇔x=−32
Exercise:
Solve in R , log4log2x+log2log4x=2
Solution: Let u=log4x⇔ulog44=log4x⇔4u=x
So log4log24u+log2u=2⇔log42u+log2u=2
ln2uln4+lnuln2=2⇔ln2u2ln2+lnuln2=2⇔ln22ln2+lnu2ln2+lnuln2=2
⇔12+lnuln2(12+1)=2⇔32log2u=32⇔log2u=log22⇔u=2
Thus 2=log4x⇔log4x=2log44⇔x=16
No comments:
Post a Comment