Loading [MathJax]/jax/output/CommonHTML/jax.js

two logarithm exercises asked by Falah Alnassri in الرياضيات في ذي قار والبصره


Exercise:

Solve in R , (log2(x))25log2x2+25=0

Solution: Let t=log2(x) & 5log2x2=10log2x=10log2|x|

So t210t+25=0t22(5)t+25=0(t5)2=0t=5

So log2(x)=5log2(x)=5log22x=25x=32

Exercise:

Solve in R , log4log2x+log2log4x=2

Solution: Let u=log4xulog44=log4x4u=x

So log4log24u+log2u=2log42u+log2u=2

ln2uln4+lnuln2=2ln2u2ln2+lnuln2=2ln22ln2+lnu2ln2+lnuln2=2

12+lnuln2(12+1)=232log2u=32log2u=log22u=2

Thus 2=log4xlog4x=2log44x=16

No comments:

Post a Comment