Processing math: 100%

series exercise asked by Imad zak in the Imad Zak math group


Exercise:

Let h(x)=1+x33!+x66!+....,q(x)=x+x44!+x77!+...,p(x)=x22!+x55!+x88!+...

Show that , h3(x)+q3(x)+p3(x)3h(x)q(x)p(x)=1

Solution: observe that h(x)+q(x)+p(x)=1+x+x22!+...=ex

We have a3+b3+c3=(a3+b3)+c3

And we know that a3+b3=(a+b)33ab(a+b)

So a3+b3+c3=(a+b)33ab(a+b)+c3=(a+b)3+c33ab(a+b)

But x3+y3=(x+y)(x2+y2xy)

So (a+b)3+c3=(a+b+c)((a+b)2+c2c(a+b))

Hence a3+b3+c3=(a+b+c)(a2+b2+c2+2abbcac)3ab(a+b)

So a3+b3+c33abc=(a+b+c)(a2+b2+c2+2abacbc)3ab(a+b)3abc

                           =(a+b+c)(a2+b2+c2+2abbcac)3ab(a+b+c)

                          =(a+b+c)[a2+b2+c2+2abbcac3ab]

                          =(a+b+c)(a2+b2+c2abbcac)

Thus a3+b3+c33abc=(a+b+c)(a2+b2+c2abacbc)

So h3(x)+q3(x)+p3(x)3h(x)q(x)p(x)

=(h(x)+q(x)+p(x))(h2(x)+q2(x)+p2(x)h(x)q(x)h(x)p(x)q(x)p(x))

=ex(h2(x)+q2(x)+p2(x)h(x)q(x)h(x)p(x)q(x)p(x))

Let z(x)=h2(x)+q2(x)+p2(x)h(x)q(x)h(x)p(x)q(x)p(x)

So z(x)=2(hh+qq+pp)(hq+qh)(hp+ph)(qp+pq)

But ddx(h(x))=0+x22!+x55!+....=p(x) , ddx(q(x))=1+x33!+x66!+....=h(x)

And ddx(p(x))=x+x44!+....=q(x)

So z(x)=2(hp+qh+pq)(pq+h2)(p2+qh)(hp+q2)

           =(hp+qh+pq)(h2+p2+q2)=z(x)

Since z(x)=z(x)dzdx=zdzz=dxln|z|=x+cz(x)=cex

Observe that h(0)=1,q(0)=0&p(0)=0z(0)=1 hence c=1

Therefore h3(x)+q3(x)+p3(x)3h(x)q(x)p(x)=exex=e0=1              Q.E.D

Or: by differentiating both sides by x to get

So 3h2h+3q2q+3p2p3(h(qp)+(qp)h)=0

3h2q+3q2h+3p2q3(p2q+(qp+pq)h)=3h2q+3q2h+3p2q3(p2q+h2p+q2h)=0

so f(x)=0f(x)=c

Now to find the value of c plug x=0 to get c=1                                   Q.E.D



*____________________________
first Method credit to شحات جامع
2nd Method credit to Kunihiko Chikaya

No comments:

Post a Comment