Exercise:
Let h(x)=1+x33!+x66!+....,q(x)=x+x44!+x77!+...,p(x)=x22!+x55!+x88!+...
Show that , h3(x)+q3(x)+p3(x)−3h(x)q(x)p(x)=1
Solution: observe that h(x)+q(x)+p(x)=1+x+x22!+...=ex
We have a3+b3+c3=(a3+b3)+c3
And we know that a3+b3=(a+b)3−3ab(a+b)
So a3+b3+c3=(a+b)3−3ab(a+b)+c3=(a+b)3+c3−3ab(a+b)
But x3+y3=(x+y)(x2+y2−xy)
So (a+b)3+c3=(a+b+c)((a+b)2+c2−c(a+b))
Hence a3+b3+c3=(a+b+c)(a2+b2+c2+2ab−bc−ac)−3ab(a+b)
So a3+b3+c3−3abc=(a+b+c)(a2+b2+c2+2ab−ac−bc)−3ab(a+b)−3abc
=(a+b+c)(a2+b2+c2+2ab−bc−ac)−3ab(a+b+c)
=(a+b+c)[a2+b2+c2+2ab−bc−ac−3ab]
=(a+b+c)(a2+b2+c2−ab−bc−ac)
Thus a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−ac−bc)
So h3(x)+q3(x)+p3(x)−3h(x)q(x)p(x)
=(h(x)+q(x)+p(x))(h2(x)+q2(x)+p2(x)−h(x)q(x)−h(x)p(x)−q(x)p(x))
=ex(h2(x)+q2(x)+p2(x)−h(x)q(x)−h(x)p(x)−q(x)p(x))
Let z(x)=h2(x)+q2(x)+p2(x)−h(x)q(x)−h(x)p(x)−q(x)p(x)
So z′(x)=2(hh′+qq′+pp′)−(h′q+q′h)−(h′p+p′h)−(q′p+p′q)
But ddx(h(x))=0+x22!+x55!+....=p(x) , ddx(q(x))=1+x33!+x66!+....=h(x)
And ddx(p(x))=x+x44!+....=q(x)
So z′(x)=2(hp+qh+pq)−(pq+h2)−(p2+qh)−(hp+q2)
=(hp+qh+pq)−(h2+p2+q2)=−z(x)
Since z′(x)=−z(x)⇔dzdx=−z⇔∫dzz=−∫dx⇔ln|z|=−x+c⇔z(x)=ce−x
Observe that h(0)=1,q(0)=0&p(0)=0⇔z(0)=1 hence c=1
Therefore h3(x)+q3(x)+p3(x)−3h(x)q(x)p(x)=exe−x=e0=1 Q.E.D
Or: by differentiating both sides by x to get
So 3h2h′+3q2q′+3p2p′−3(h′(qp)+(qp)′h)=0
⇔3h2q+3q2h+3p2q−3(p2q+(q′p+p′q)h)=3h2q+3q2h+3p2q−3(p2q+h2p+q2h)=0
so f′(x)=0⇔f(x)=c
Now to find the value of c plug x=0 to get c=1 Q.E.D
*____________________________
first Method credit to شحات جامع
2nd Method credit to Kunihiko Chikaya
No comments:
Post a Comment