Exercise:
Consider a matrix $A=\left[ \begin{matrix}
0 & -r & 0 \\
r & 0 & 0 \\
0 & 0 & 0 \\
\end{matrix} \right]$ for every $r\in \mathbb{R}$
Show that ${{e}^{A}}=\left[ \begin{matrix}
\cos r & -\sin r & 0 \\
\sin r & \cos r & 0 \\
0 & 0 & 1 \\
\end{matrix} \right]$
Solution: let’s compute, $\left( \lambda I-A \right)=\left( \begin{matrix}
\lambda & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & \lambda \\
\end{matrix} \right)-\left( \begin{matrix}
0 & -r & 0 \\
r & 0 & 0 \\
0 & 0 & 0 \\
\end{matrix} \right)=\left[ \begin{matrix}
\lambda & r & 0 \\
-r & \lambda & 0 \\
0 & 0 & \lambda \\
\end{matrix} \right]$
but ${{\left( \lambda I-A \right)}^{-1}}=\frac{1}{\det \left( \lambda I-A \right)}adj\left( \lambda I-A \right)$
Observe that, $\left| \lambda I-A \right|=\lambda \left( {{\lambda }^{2}} \right)-r\left( -r\lambda \right)={{\lambda }^{3}}+{{r}^{2}}\lambda =\lambda \left( {{\lambda }^{2}}+{{r}^{2}} \right)$
Let’s compute the minor matrix for $\lambda I-A$ as follows
\[\left[ \begin{matrix}
\left| \begin{matrix}
\lambda & 0 \\
0 & \lambda \\
\end{matrix} \right| & \left| \begin{matrix}
-r & 0 \\
0 & \lambda \\
\end{matrix} \right| & \left| \begin{matrix}
-r & \lambda \\
0 & 0 \\
\end{matrix} \right| \\
\left| \begin{matrix}
r & 0 \\
0 & \lambda \\
\end{matrix} \right| & \left| \begin{matrix}
\lambda & 0 \\
0 & \lambda \\
\end{matrix} \right| & \left| \begin{matrix}
\lambda & r \\
0 & 0 \\
\end{matrix} \right| \\
\left| \begin{matrix}
r & 0 \\
\lambda & 0 \\
\end{matrix} \right| & \left| \begin{matrix}
\lambda & 0 \\
-r & 0 \\
\end{matrix} \right| & \left| \begin{matrix}
\lambda & r \\
-r & \lambda \\
\end{matrix} \right| \\
\end{matrix} \right]=\left[ \begin{matrix}
{{\lambda }^{2}} & -r\lambda & 0 \\
r\lambda & {{\lambda }^{2}} & 0 \\
0 & 0 & {{\lambda }^{2}}+{{r}^{2}} \\
\end{matrix} \right]\]
So the cofactor matrix is $\left[ \begin{matrix}
{{\lambda }^{2}} & r\lambda & 0 \\
-r\lambda & {{\lambda }^{2}} & 0 \\
0 & 0 & {{\lambda }^{2}}+{{r}^{2}} \\
\end{matrix} \right]$
so $adj\left( \lambda I-A \right)=\left[ \begin{matrix}
{{\lambda }^{2}} & -r\lambda & 0 \\
r\lambda & {{\lambda }^{2}} & 0 \\
0 & 0 & {{\lambda }^{2}}+{{r}^{2}} \\
\end{matrix} \right]$ Thus ${{\left( \lambda I-A \right)}^{-1}}=\left[ \begin{matrix}
\frac{\lambda }{{{\lambda }^{2}}+{{r}^{2}}} & \frac{-r}{{{\lambda }^{2}}+{{r}^{2}}} & 0 \\
\frac{r}{{{\lambda }^{2}}+{{r}^{2}}} & \frac{\lambda }{{{\lambda }^{2}}+{{r}^{2}}} & 0 \\
0 & 0 & \frac{1}{\lambda } \\
\end{matrix} \right]$
So ${{e}^{At}}={{\mathcal{L}}^{-1}}\{{{\left( \lambda I-A \right)}^{-1}}\}=\left[ \begin{matrix}
{{\mathcal{L}}^{-1}}\{\frac{\lambda }{{{\lambda }^{2}}+{{r}^{2}}}\} & {{\mathcal{L}}^{-1}}\{\frac{-r}{{{\lambda }^{2}}+{{r}^{2}}}\} & 0 \\
{{\mathcal{L}}^{-1}}\{\frac{r}{{{\lambda }^{2}}+{{r}^{2}}}\} & {{\mathcal{L}}^{-1}}\{\frac{\lambda }{{{\lambda }^{2}}+{{r}^{2}}}\} & 0 \\
0 & 0 & {{\mathcal{L}}^{-1}}\{\frac{1}{\lambda }\} \\
\end{matrix} \right]=\left[ \begin{matrix}
\cos r & -\sin r & 0 \\
\sin r & \cos r & 0 \\
0 & 0 & 1 \\
\end{matrix} \right]$
No comments:
Post a Comment