Exercise:
Compute, limn→∞1n∫n1x4+4x3+12x2+9x(x+3)5−x5−243dx
Solution: we have x4+4x3+12x2+9x=x(x3+4x2+12x+9)
Observe that x=−1 is a root so x3+4x2+12x+9=(x+1)(x2+3x+9)
Thus x4+4x3+12x2+9x=x(x+1)(x2+3x+9)
Observe that (x+3)5−x5−243=(x+3)5−x5−35=(x+3)5−(x5+35)
By using, xn+yn=(x+y)(xn−1−xn−2y+...−xyn−2+yn−1),nodd
So x5+35=(x+3)(x4−3x3+32x2−33x+34)
Hence (x+3)5−(x5+35)=(x+3)5−(x+3)(x4−3x3+9x2−27x+81)
=(x+3)((x+3)4−x4+3x3−9x2+27x−81)=15x(x+3)(x2+3x+9)
So x4+4x3+12x2+9x(x+3)5−x5−243=x(x+1)(x2+3x+9)15x(x+3)(x2+3x+9)=x+115(x+3)
So limn→∞1n∫n1x4+4x3+12x2+9x(x+3)5−x5−243dx=limn→∞1n∫n1x+115(x+3)dx
But ∫x+1x+3dx=∫x+1−3+3x+3dx=∫x+3x+3dx−2∫dxx+3=x−2ln|x+3|+c
Hence ∫n1x+115(x+3)dx=115(x−2ln(x+3))n1=115(n−2ln(n+3)−(1−2ln4))
Thus limn→∞1n∫n1x+115(x+3)dx=limn→∞115(1−2ln(n+3)n−1−2ln4n)=115
No comments:
Post a Comment