Loading [MathJax]/jax/output/CommonHTML/jax.js

Integral exercise asked in many math groups by Dan Situra


Exercise:

Compute, limn1nn1x4+4x3+12x2+9x(x+3)5x5243dx

Solution: we have x4+4x3+12x2+9x=x(x3+4x2+12x+9)

Observe that x=1 is a root so x3+4x2+12x+9=(x+1)(x2+3x+9)

Thus x4+4x3+12x2+9x=x(x+1)(x2+3x+9)

Observe that (x+3)5x5243=(x+3)5x535=(x+3)5(x5+35)

By using, xn+yn=(x+y)(xn1xn2y+...xyn2+yn1),nodd

So x5+35=(x+3)(x43x3+32x233x+34)

Hence (x+3)5(x5+35)=(x+3)5(x+3)(x43x3+9x227x+81)

=(x+3)((x+3)4x4+3x39x2+27x81)=15x(x+3)(x2+3x+9)

So x4+4x3+12x2+9x(x+3)5x5243=x(x+1)(x2+3x+9)15x(x+3)(x2+3x+9)=x+115(x+3)

So limn1nn1x4+4x3+12x2+9x(x+3)5x5243dx=limn1nn1x+115(x+3)dx

But x+1x+3dx=x+13+3x+3dx=x+3x+3dx2dxx+3=x2ln|x+3|+c

Hence n1x+115(x+3)dx=115(x2ln(x+3))n1=115(n2ln(n+3)(12ln4))

Thus limn1nn1x+115(x+3)dx=limn115(12ln(n+3)n12ln4n)=115

No comments:

Post a Comment