Exercise:
Compute, limx→esinx−sinelnx−1
Solution: we have sinx−sinelnx−1=sinx−sinelnx−lne×x−ex−e=sinx−sinex−e×x−elnx−lne
So limx→esinx−sinelnx−ln1=limx→esinx−sinex−e×limx→ex−elnx−lne=ddx(sinx)x=e1ddx(lnx)x=e
Thus limx→esinx−sinelnx−1=(cose)11e=ecose
Exercise:
Compute, limx→02−cos2x−cos4xx2
Solution: we have 2−cos2x−cos4xx2=1−cos2x+1−cos4xx2=2sin2xx2+2sin22xx2
So limx→02−cos2x−cos4xx2=limx→02sin2xx2+limx→02sin22xx2
=2limx→0(sinxx)2+2limx→0(sin2xx)2=2+2limx→0sin22x(2x2)2=2+2(4)=10
Exercise:
Find the value of a such that limx→ax2−a2(x+a)3−8a3=3
Solution: we know that x2−a2=(x−a)(x+a) and
(x+a)3=(x+a)(x2+2ax+a2)
So limx→ax2−a2(x+a)3−8a3=limx→a(x−a)(x+a)(x+a)3−(2a)3
=limx→a(x−a)(x+a)(x+a−2a)((x+a)2+2a(x+a)+4a2)=limx→ax+a(x+a)2+2a(x+a)+4a2=3
⇔2a4a2+2a(2a)+4a2=3⇔2a12a2=3⇔16a=3⇔a=118
No comments:
Post a Comment