Processing math: 100%

Pages

Limit exercises asked by 3 Arabic teachers in the mathematics teacher group


Exercise:

Compute, limxesinxsinelnx1

Solution: we have sinxsinelnx1=sinxsinelnxlne×xexe=sinxsinexe×xelnxlne

So limxesinxsinelnxln1=limxesinxsinexe×limxexelnxlne=ddx(sinx)x=e1ddx(lnx)x=e

Thus limxesinxsinelnx1=(cose)11e=ecose

Exercise:

Compute, limx02cos2xcos4xx2

Solution: we have 2cos2xcos4xx2=1cos2x+1cos4xx2=2sin2xx2+2sin22xx2

So limx02cos2xcos4xx2=limx02sin2xx2+limx02sin22xx2

=2limx0(sinxx)2+2limx0(sin2xx)2=2+2limx0sin22x(2x2)2=2+2(4)=10

Exercise:

Find the value of a such that limxax2a2(x+a)38a3=3

Solution: we know that x2a2=(xa)(x+a) and

(x+a)3=(x+a)(x2+2ax+a2)

So limxax2a2(x+a)38a3=limxa(xa)(x+a)(x+a)3(2a)3

=limxa(xa)(x+a)(x+a2a)((x+a)2+2a(x+a)+4a2)=limxax+a(x+a)2+2a(x+a)+4a2=3

2a4a2+2a(2a)+4a2=32a12a2=316a=3a=118

No comments:

Post a Comment