Exercise:
Show that, limx→0x4sin2x−x2=−3 without using L’Hospital Rule or series expansion
Solution: Let L=limx→0x4sin2x−x2=limx→0x.x3(sinx+x)(sinx−x)
⇔L=limx→0xsinx+x×limx→0x3sinx−x=l1×l2
l1=limx→0xsinx+x=limx→0xx(1+sinxx)=limx→011+1=12
l2=limx→0x3sinx−x=limx→0x3x3sinx−xx3=limx→01sinx−xx3
Remark that sin3x=3sinx−4sin3x hence sinx=3sinx3−4sin3x3
But limx→0sinx−xx3=limx→03sinx3−4sin3x3−xx3
=limx→03(sin(x3)−x3)−4sin3(x3)x3=3limx→0sin(x3)−x327(x3)3−4limx→0sin3x327(x3)3
Let u=x3,asx→0,u→0
So limx→0sinx−xx3=327limu→0sinu−uu3−427limu→0sin3uu3
⇒(1−19)limx→0sinx−xx3=−427⇔limx→0sinx−xx3=−42789=−16
So l2=limx→0x3sinx−x=−6 thus L=l1×l2=(12)(−6)=−3
Therefore, limx→0x4sin2x−x2=−3
*___________________________
The idea of solution credit to .محمد خالد غزول
No comments:
Post a Comment