Loading [MathJax]/jax/output/CommonHTML/jax.js

Limit exercise done without using the L'hospital Rule or series expansion asked by Falah Alnassri in the math.thi.qar group


Exercise:

Show that, limx0x4sin2xx2=3 without using L’Hospital Rule or series expansion

Solution: Let L=limx0x4sin2xx2=limx0x.x3(sinx+x)(sinxx)

L=limx0xsinx+x×limx0x3sinxx=l1×l2

l1=limx0xsinx+x=limx0xx(1+sinxx)=limx011+1=12

l2=limx0x3sinxx=limx0x3x3sinxxx3=limx01sinxxx3

Remark that sin3x=3sinx4sin3x hence sinx=3sinx34sin3x3

But limx0sinxxx3=limx03sinx34sin3x3xx3

=limx03(sin(x3)x3)4sin3(x3)x3=3limx0sin(x3)x327(x3)34limx0sin3x327(x3)3

Let u=x3,asx0,u0

So limx0sinxxx3=327limu0sinuuu3427limu0sin3uu3

(119)limx0sinxxx3=427limx0sinxxx3=42789=16

So l2=limx0x3sinxx=6 thus L=l1×l2=(12)(6)=3

Therefore, limx0x4sin2xx2=3




*___________________________
The idea of solution credit to .محمد خالد غزول

No comments:

Post a Comment