Exercise:
Find $\underset{x\to 0}{\mathop{\lim }}\,{{\left( \tan \left( x+\frac{\pi }{4} \right) \right)}^{1/x}}$
Solution: Let $y={{\left( \tan \left( x+\frac{\pi }{4} \right) \right)}^{1/x}}\Leftrightarrow \ln y=\frac{1}{x}\ln \left( \tan \left( x+\frac{\pi }{4} \right) \right)$
So \(\underset{x\to 0}{\mathop{\lim }}\,\frac{1}{x}\ln \left( \tan \left( x+\frac{\pi }{4} \right) \right)=\frac{0}{0}\,\,ind\,form\)
Observe that $\underset{x\to 0}{\mathop{\lim }}\,\frac{\ln \left( \tan \left( x+\frac{\pi }{4} \right) \right)}{x}=\underset{x\to 0}{\mathop{\lim }}\,\frac{\ln \left( \tan \left( x+\frac{\pi }{4} \right) \right)-\ln \left( \tan \frac{\pi }{4} \right)}{x-0}$
$=\underset{x\to 0}{\mathop{\lim }}\,\frac{\ln \left( \tan \left( x+\frac{\pi }{4} \right) \right)-0}{x-0}=\underset{x\to 0}{\mathop{\lim }}\,\frac{f\left( x \right)-f\left( 0 \right)}{x-0}=f'\left( 0 \right)$ where $f\left( x \right)=\ln \left( \tan \left( x+\frac{\pi }{4} \right) \right)$
But $f'\left( x \right)=\frac{{{\sec }^{2}}\left( x+\frac{\pi }{4} \right)}{\tan \left( x+\frac{\pi }{4} \right)}\Leftrightarrow f'\left( 0 \right)=\frac{{{\sec }^{2}}\left( \frac{\pi }{4} \right)}{\tan \left( \frac{\pi }{4} \right)}=\frac{2}{1}=2$
Thus $\underset{x\to 0}{\mathop{\lim }}\,y=\underset{x\to 0}{\mathop{\lim }}\,{{e}^{\frac{\ln \left( \tan \left( x+\frac{\pi }{4} \right) \right)}{x}}}={{e}^{2}}\Leftrightarrow y=\underset{x\to 0}{\mathop{\lim }}\,{{\left( \tan \left( x+\frac{\pi }{4} \right) \right)}^{1/x}}={{e}^{2}}$
*_____________________________
The idea of definition of differential coefficient credit to Kunny Shogun
No comments:
Post a Comment