Exercise:
Solve in $\mathbb{C},$ $\left| z-2016
\right|+\left| z-2015 \right|=1$
Solution: we know that $\left|
{{z}_{1}}+{{z}_{2}} \right|\le \left| {{z}_{1}} \right|+\left| {{z}_{2}}
\right|$ where ${{z}_{1}},{{z}_{2}}\in \mathbb{C}$
So $\left| z-2016 \right|+\left| z-2015
\right|\ge \left| z-2016+z-2015 \right|$
Hence $\left| 2z-4031 \right|\le 1$ (*)
Let $z=x+iy\,\,,\,\,\,\left( x,y \right)\in
{{\mathbb{R}}^{2}}$
Now $\left| z-2016 \right|+\left|
z-2015 \right|=1\Leftrightarrow \left| z-2016 \right|=1-\left| z-2015 \right|$
S.B.S
$\Rightarrow {{\left| z-2016
\right|}^{2}}=1+{{\left| z-2015 \right|}^{2}}-2\left| z-2015 \right|$
$\Rightarrow {{\left( x-2016
\right)}^{2}}+{{y}^{2}}=1+{{\left( x-2015 \right)}^{2}}+{{y}^{2}}-2\left|
z-2015 \right|$
$\Rightarrow
-\left( 2x-4031 \right)=1-2\sqrt{{{\left( x-2015 \right)}^{2}}+{{y}^{2}}}$
$\Rightarrow
x-2015=\sqrt{{{\left( x-2015 \right)}^{2}}+{{y}^{2}}}$ S.B.S
$\Rightarrow
{{\left( x-2015 \right)}^{2}}={{\left( x-2015
\right)}^{2}}+{{y}^{2}}\Leftrightarrow {{y}^{2}}=0\Leftrightarrow y=0$ so $\operatorname{Im}\left(
z \right)=0$
Now using
(*) $\left| 2z-4031 \right|\le 1\Leftrightarrow \left| 2x-4031 \right|\le
1\Leftrightarrow -1+4031\le 2x\le 1+4031\Leftrightarrow 2015\le x\le 2016$
Thus $2015\le
\operatorname{Re}\left( z \right)\le 2016$
No comments:
Post a Comment