Exercise:
Solve in$\mathbb{Z}$ , $x\left( x+1 \right)\left( x+7 \right)\left( x+8 \right)={{y}^{2}}$
Solution: we have $x\left( x+1 \right)\left( x+7 \right)\left( x+8 \right)=\left( {{x}^{2}}+8x \right)\left( {{x}^{2}}+8x+7 \right)={{y}^{2}}$
Let $w={{x}^{2}}+8x\Leftrightarrow w\left( w+7 \right)={{y}^{2}}\Leftrightarrow {{w}^{2}}+7w={{y}^{2}}\Leftrightarrow 4{{w}^{2}}+28w=4{{y}^{2}}$
$\Rightarrow 4{{w}^{2}}+2\left( 2w \right)\left( 7 \right)+49-49=4{{y}^{2}}\Leftrightarrow {{\left( 2w+7 \right)}^{2}}-49=4{{y}^{2}}$
$\Rightarrow {{\left( 2w+7 \right)}^{2}}-4{{y}^{2}}=49\Leftrightarrow \left( 2w+7-2y \right)\left( 2w+7+2y \right)=49$
Let $t=2w+7-2y\Leftrightarrow t+2y=2w+7$
So $t\left( t+2y+2y \right)=49\Leftrightarrow t\left( t+4y \right)=49\Leftrightarrow {{t}^{2}}+4ty=49\Leftrightarrow y=\frac{49-{{t}^{2}}}{4t}$
So the Divisors of $\left\{ \pm 1,\pm 7,\pm 49 \right\}$ the job to make $y$ is integer
If $t=1\Leftrightarrow y=\frac{49-1}{4}=12$ and if $t=-1\Leftrightarrow y=\frac{49+1}{-4}=-\frac{50}{4}\notin \mathbb{Z}$
If $t=7\Leftrightarrow y=\frac{49-49}{4\left( 7 \right)}=\frac{0}{28}=0$ and if $t=-7\Leftrightarrow y=\frac{49-49}{-28}=0$
If $t=49\Leftrightarrow y=\frac{49-{{49}^{2}}}{4\left( 49 \right)}=\frac{-2352}{196}=-12$
If $t=-49\Leftrightarrow y=\frac{49-{{49}^{2}}}{-196}=\frac{-2352}{-196}=12$
$\left( t,y \right)=\left( 1,12 \right)\Leftrightarrow w=\frac{t+2y-7}{2}=\frac{19}{2}\notin \mathbb{Z}$
$\left( t,y \right)=\left( 7,0 \right)\Leftrightarrow w=\frac{7-7}{2}=0\in \mathbb{Z}$ $\Leftrightarrow x=0\,\,or\,\,-8$
$\left( t,y \right)=\left( -7,0 \right)\Leftrightarrow w=\frac{-7-7}{2}=-7\in \mathbb{Z}$ $\Leftrightarrow x=-1\,\,\,\,or\,\,\,-7$
$\left( t,y \right)=\left( 49,-12 \right)\Leftrightarrow w=\frac{49-24-7}{2}=\frac{18}{2}=9\in \mathbb{Z}$ $\Leftrightarrow x=-9\,\,or\,x=1$
$\left( t,y \right)=\left( -49,12 \right)\Leftrightarrow w=\frac{-49+24-7}{2}=\frac{-32}{2}=-16\in \mathbb{Z}$ $\Leftrightarrow x=-4$
No comments:
Post a Comment