Exercise:
Let $a,b\in {{\mathbb{R}}^{+}}$ such that $a\ne b$ , show that, ${{\left(
\frac{1+a}{1+b} \right)}^{\frac{1}{a-b}}}<e$ *
Solution: Let $f\left( x \right)=\ln \left( 1+x \right)$ and since $f$
is continuous on $\left[ a,b \right]$
And differentiable on $\left( a,b \right)$ then by MVT
$\exists c\in {{\mathbb{R}}^{+}}$ Between $a$ and $b$ such that $f'\left(
c \right)=\frac{f\left( a \right)-f\left( b \right)}{a-b}$
As $a,b,c>0$ so $f'\left( x \right)=\frac{1}{1+x}\Leftrightarrow
f'\left( c \right)=\frac{1}{1+c}<1\Leftrightarrow \frac{f\left( a
\right)-f\left( b \right)}{a-b}<1$
Hence $\frac{\ln \left( 1+a \right)-\ln \left( 1+b \right)}{a-b}<1\Leftrightarrow
\ln \left( 1+a \right)-\ln \left( 1+b \right)<a-b\Leftrightarrow \ln
\frac{1+a}{1+b}<a-b$
But $e$ is continuous and increasing function
So ${{e}^{\ln \left( \frac{1+a}{1+b}
\right)}}<{{e}^{a-b}}\Leftrightarrow \sqrt[a-b]{{{e}^{\ln \left(
\frac{1+a}{1+b} \right)}}}<\sqrt[a-b]{{{e}^{a-b}}}\Leftrightarrow {{\left(
\frac{1+a}{1+b} \right)}^{\frac{1}{a-b}}}<e$
*___________________________________________________
-2015 Hitotsubashi University entrance exam /Economic ( 2nd Exam )
-2015 Hitotsubashi University entrance exam /Economic ( 2nd Exam )
No comments:
Post a Comment