Exercise:
Compute, ∞∑i=1∫π40sinixdx
Solution: we have ∞∑i=1∫π40sinixdx=∫π40sinxdx+∫π40sin2xdx+....
So ∞∑i=1∫π40sinixdx=∫π40∞∑i=1sinixdx
Notice that 0≤x≤π4⇔0≤sinx≤√22<1⇔|sinx|<1
Notice that ∞∑i=1ti is a Geometric series with common ratio is t
Hence ∞∑i=1ti=t1−t where |t|<1 thus ∞∑i=1sinix=sinx1−sinx with |sinx|<1
But sinx1−sinx=sinx(1+sinx)1−sin2x=sinx+sin2xcos2x=sinxcos2x+1−cos2xcos2x
=secxtanx+sec2x−1
So ∫π40∞∑i=1sinixdx=∫π40(secxtanx+sec2x−1)dx=∫π40secxtanxdx+∫π40sec2xdx−∫π40dx
=∫π40secxtanxdx+∫π40d(tanx)−[x]π40=∫π40secxtanxdx+[tanx]π40−π4
=∫π40secxtanx+1−π4=∫π40sinxcos2xdx+1−π4=−∫π40d(cosx)cos2x+1−π4
=[secx]π40+1−π4=√2−1+1−π4=√2−π4
No comments:
Post a Comment