Loading [MathJax]/jax/output/CommonHTML/jax.js

Pages

Mixed Exercise between Geometric series and improper integral i=1π40sinixdx


Exercise:

Compute, i=1π40sinixdx

Solution: we have i=1π40sinixdx=π40sinxdx+π40sin2xdx+....

So i=1π40sinixdx=π40i=1sinixdx

Notice that 0xπ40sinx22<1|sinx|<1

Notice that i=1ti is a Geometric series with common ratio is t

Hence i=1ti=t1t where |t|<1 thus i=1sinix=sinx1sinx with |sinx|<1

But sinx1sinx=sinx(1+sinx)1sin2x=sinx+sin2xcos2x=sinxcos2x+1cos2xcos2x

                 =secxtanx+sec2x1

So π40i=1sinixdx=π40(secxtanx+sec2x1)dx=π40secxtanxdx+π40sec2xdxπ40dx

                       =π40secxtanxdx+π40d(tanx)[x]π40=π40secxtanxdx+[tanx]π40π4

                       =π40secxtanx+1π4=π40sinxcos2xdx+1π4=π40d(cosx)cos2x+1π4

                       =[secx]π40+1π4=21+1π4=2π4

No comments:

Post a Comment